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MINIMAL REVISION

- Sets

-X€EA

- @ cA(foranyA)

- Set-relations, Venn diagrams
- Functions (blackboard)

- Questions?
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FREGE'S CONJECTURE



FREGE'S CONJECTURE
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QUICK THROWBACK TO FREGE

- Frege construed unsaturated meanings as functions.

- Functions are relations of mapping between a domain and a range. Or,
functions are sets of ordered pairs.

. How can unsaturated meanings be analysed as sets of ordered pairs? Pairs
of what? (Hm.)
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FREGE'S CONJECTURE

Frege's conjecture: what was it?
Meaning composition is function application.

- Function application = an application of function. (Go figure.)

- But how? Think of what a functioniis ...

- If unsaturated meanings are functions, then what is theirdomain and
range?

- To understand this, we'll take an excursus.

344



EXTENSION G FIRST APPLICATION



EXTENSION G FIRST APPLICATION

EXTENSION



EXTENSION

Extension: whatis it?
An extension of a sentence is its truth-value.

- Whatis a truth-value? How many values can truth have?

- Extension: whatis said extends into the real world and bounces back as
either true or false.

- Meaning is then extension! Another word we'll use instead of 'meaning”
denotation.

1 a x=x

b. [x] = the denotation (meaning) of x

4l44



- Technically, [ ]isafunction, more precisely, itisan interpretation
function.

- It takes something and returns its meaning.

- More importantly: it takes something linguistic and returns
something actual.

- Romantically, then[ ] : WORDS = MEANING

- [ 1isthusthe great (one-directional!) truth-translator.
- We will be interpreting English using extensional semantics.
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EXTENSION

- Asentence can be true (1) or false (0).
- Cana proper name be true or false?
- If sentences ‘extend’ to truth-values, what do names 'extend' to?

1 iff Annsmokes
() a. [Annsmokes] = { 0 igAnn does not smoke
b. [Ann] = Ann
- Names mean things. Smart talk: names denote individuals in the world.
- Canyou see how we could now get closer to the meaning of the verb
smokes? Try figure it out, in groups.
- (3 min. discussion)
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EXTENSION: AN INVENTORY OF DENOTATIONS

Let D be the set of all individuals that exist in the real world. (D stands for
domain.)

(@: how would we define the set D?)

- Possible denotations:

- Elements of D, the set of actual individuals. names
- Elements of {0, 1}, the set of truth-values. sentences
- Functionsfrom D to {0, 1}. everything else

- Back to smoking: what does smokes denote?
- Answer: a function fromDto {0, 1}
- Could we write it more formally?
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TOWARDS A RECIPE FOR MEANING

- Our semantic theory will need three components. We already introduced

one.

Inventory of denotations (3 of those.)
Lexicon (For terminal nodes only; we automatically know the denotation type of

words.)
Rules of composition, a.k.a., rules for non-terminal nodes’' (We'll need some

syntax now.)
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TOWARDS A RECIPE FOR MEANING: EXAMPLES

Inventory of denotations Lexicon
- Elementsof D, thesetofac- - Proper names:
tual individuals. - [Ann] =Ann
- Elementsof {0,1}, the set of - [Bill] =Bill
truth-values. - Intransitive verbs:
- Functions fromDto {0,1}. - [smokes] =f: D+~ {0,1}

Forallx € D, f(x) = Liff x smokes
- [works] =f: D~ {0,1}
Forallx € D, f(x) = Liffx works
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SOME SYNTAX

- Fornow, we'll be working with sentences that /S\
contain a proper name as a subject and an
. . NP VP
intransitive verb.

- Such sentences associate with a syntactic structure vV

on theright.

Ann smokes
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SOME SYNTAX

- Asentence S comprises a subject, which isa Noun /S\
Phrase NP, and a verb, which is actually a Verb
NP VP
Phrase VP. ‘ ‘
- Every phrase has a head, so NP contains a noun N vV
head, N, and the VP contains a verb head, V. ‘ ‘
- That's the syntax we need for now. Ann smokes
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SOME SYNTAX: STRUCTURAL RELATIONS

- Let'sintroduce three simple structural relations: >
motherhood «is §'s mother (=mother node) if & immediately /\
dominates 6. List some motherhood relations. VP
daughterhood Bis o's daugher (=daughter node) if a ‘ ‘
immediately dominates 6. List some motherhood N \V/
relations. ‘ ‘
sisterhood «is s sister (and vice versa)if bothaand Bare  Ann smokes

immediately dominated by y. List the one sisterhood
relation.
- And two more pairs of concept:
non/terminal node has (no)daughters.
non-branching node has (no) sisters.
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INTERPRETING TREES

NP VP
| |
(3) a.[Ann]=| N b. [smokes] = vV
| |
Ann smokes
_ ‘ .
/\
NP VPP

(4) [Annsmokes] = | |
N \Y
| |
n

L Ann smokes ||
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RULES FOR INTERPRETING TREES

- Fornow, there are only two rules for interpreting trees, depending on
whether the sub/tree is non/branching:

Rule #1 Rule #2
In a non-branching node, the In a (binary) branching node, the
denotation of the daughter is inherited denotation of the motheris the
by the mother. functional application of its daughters.
fo]l <. -~ o
| LN
> [6] - > 160 Iyl
-yl N

[l = 061(IyD)
[a] = [6] = [yl 14/44



APPLYING THE INTERPRETATION RULES TO TREES

- Let's try calculating the meaning of "Ann smokes” then.

- Before we do, let's recall Frege's unsaturated meanings. Is there an
unsaturated meaning in "Ann smokes™?

- Yes. It's the verb smokes. If unsaturated meanings are functions, then
smokes is a function, as we already learnt.

- What kind of a function?

- Well, it takes individuals, like Ann, and returns (=its values are) truth-values.

- The extension of of an intransitive verb like "smoke”, then, should be a
function from individuals to truth-values.
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APPLYING THE INTERPRETATION RULES TO TREES

S ' [S]
N T
NP VP INP] [VP]
= | |
N Vv INT VI
| |
| Ann smokes | [Ann] [smokes]
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APPLYING THE INTERPRETATION RULES TO TREES

- Lexicon: denotation of [Ann] [:D = {0,1} ( )
) . [s1 Forallx e D Ann|=1
- Lexicon: denotation of [smokes] fx) = Liffx smokes
- Composition rule: non-branching [NP] [VP]
nodes inherit the denotations from | |
their daughters. This happens IN] [[Y]]
twice, for both the NP and the VP. f:Dw {0,1}
[AnnJAnn [smokes] Forallxe D

- Composition rule: branching

nodes as FA at S-level. f(x) = 1iff x smoke
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EXTENSION G FIRST APPLICATION

BACK TO TRUTH-CONDITIONS



DERIVING TRUTH-CONDITIONS IN AN EXTENSIONAL SEMANTICS

- Suppose Ann, Jan, and Maria are the only individuals in the actual world.
- Annand Jan are the only smokers.
- The extension of the verb "smoke” can, in this world, be displayed as follows:

VP
| Ann -1
[smokes] V (Ann) =| Janm1 (Ann) =1
| Maria - 0
smokes
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EXTENSION G FIRST APPLICATION

CHARACTERISTIC FUNCTIONS



SETS AND THEIR CHARACTERISTIC FUNCTIONS

We have construed the meaning of intransitive verbs as functions from a set
of individuals to a set of truth values.
Alternatively, the meaning of intransitive verbs can be construed simply as a
set.
- Intuition: an intransitive verb denotes the set of individuals that it is
true of.

a. LetAbea set. Then cHARy, the characteristic function of A, is that function
f:
|1 foranyxeA
0 = { 0 foranyx¢A

b. Letfbeafunctionwithrange{0,1}. Then CHARf, the set characterised by f,

is{xeD: f(x) =1} 19/44



SETS AND THEIR CHARACTERISTIC FUNCTIONS: AN EXAMPLE

Context

Let our universe contain only three individuals: {Ann, Jan, Maria}. Suppose
that Ann and Jan are the only ones who sleep, and Ann is the only one who
snores.

Example: set treatment

If intransitive verbs denote sets, then sleep and snore denote the following:

(5) [sleep] = {Ann,jan}

[snore] = {Ann}

(6)

Ann € [sleep]

g w9 @

[snore] < [sleep]
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SETS AND THEIR CHARACTERISTIC FUNCTIONS: AN EXAMPLE

Example: cHARf treatment

Same context. If intransitive verbs denote characteristic functions (CHARy),
then the following are denotations of sleep and snore.

Ann - 1
(7) a. [sleep] =| Janm1
Maria ~ 0

Ann 1
b. [snore] =| Jan~0
Maria ~ 0

(8) Arethefollowing now true?
a. Ann € [sleep] (NO)
b. [snore] < [sleep] (NO) N4



SETS AND THEIR CHARACTERISTIC FUNCTIONS: INTERIM SUMMARY

- We willadopt the CHARs notation and conception (right column) and drop
basic set notation.

Old system New system
[[VINTR =1] Set CHARf
[Annsleeps] = Ann € [sleep] [sleep](Ann) =1
Setrel. [snore] c [sleep] {x:[snore](x) =1} ¢

{x: [sleep](x) = 1}
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ADDING TRANSITIVE VERBS




WHAT ABOUT TRANSITIVE VERBS?

(9) Annsmokes. () S

(10) Annlikes Jan. N

NP VP
VAN
N i NP
I

Ann likes N

Jan

- How do we define the meaning of likes, given what we know about the
meaning of an intransitive verb like smokes?
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WHAT ABOUT TRANSITIVE VERBS?

(12) [smokes] =f:Dw~ {0,1}
Forallx € D, f(x) = Liffx smokes

(13) [likes]=g:Dwf

(14) [likes] =g:Dw+ D~ {0.1}

(15) [likes] =f: D~ {g: gisafunctionfromD ~ {0,1}}
Forallx,y € D, f(x)(y) = Liff xlikesy

- Thislogicisin line with the syntax: V first combines with the direct object to
forma VP (hence it needs a meanings).

- Recall branching-node meaning and the inventory of meanings ...(What's
different here?)
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REVISITING DENOTATION INVENTORY AND A MILD INTRO TO TYPES

Domain of individuals
eis the type of individuals (entities), where Dg := D.

Domain of truth-values
tisthe type of truth values, where Dy := {0, 1}.

eand tare basic types and
What, then, are unsaturated meanings?

25/44



REVISITING DENOTATION INVENTORY AND A MILD INTRO TO TYPES

They are of derived types for various functions.

a. Diey :={f:fisafunction from De - Dy}
b. Die ey := {f: fisafunction from De + Diety}

C.
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TYPES G DOMAINS: AN INTERIM SUMMARY

a. eandtaresemantic types.

b. If 0and T are semantic types, then (g, ) is a semantic type. (Why not just say if e

and t are semantic types, ..."?)

C. Nothingelseisasemantic type.

a. De:=D (the set of )
b. Dy :={0,1} (the set of )
c. Forany semantic types g and 1, Dg ¢y is the set of
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TYPES G DOMAINS: AN INTERIM SUMMARY

- So far, we've come across four denotation types:

- typee (example: names)
- type (e, t) (example: intransitive Vs)
- type (e, (e, t)) (example: transitive Vs)
- typet (example: sentences)
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THE ROAD AHEAD

- We've covered a conceptually vast, yet relatively simple, metalinguistic
system with(in) which we can analyse meanings.
- We now have two more technical matters to address:
- One will decompose 2-place functions (=transitive Vs) and make sense
of them in terms of the system we've been developing.
- Another will simplify the technical issues with the way we've been
writing down functions. It will make life easier. And it makes much

sense.
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SCHONFINKELISATION

- We need a bit more maths to synthesise the last portion of slides and
understand trans-Vs as 2-place functions.

- Recall our three general assumptions:
Binary branching In the syntax, trans-Vs combine with the direct object to
forma VP, and VPs combine with the subject to form a sentence.
Locality Semantic interpretation rules are local: the denotation of any

non-terminal node is computed from the denotation of its daughter
nodes.

Frege's conjecture Semantic composition isfunctional application.
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Example

Let our domain D contain just the three goats Sebastian, Dimitri, and Leopold.
Sebastian is the biggest and Leopold the smallest. The relation “is-bigger-than”
is then the following set of ordered pairs:

(Sebastian, Dimitri),
(16) Rgccer = § (Sebastian, Leopold),
(Dimitri, Leopold)

- Thereis a correspondence between sets and their characteristic functions.
- What is the functional version of Rg,cger? (3MinNs)
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- The resulting function fsccer iS @ 2-place function.

- Moses Schonfinkel, a logician, showed that n-place functions are reducible
to1-place function.

- This reduction is Schonfinkelisation.
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fBIGGER =

UU_U’_U’U\_I_J__I_

N o~ o~ o~ o~ S~

. fBIGGER isafunction that applies to the first arg. and yields a function that

applies to the second arg.

- When applied to Leopold, it yields a function that maps any goat to1if it is

smaller than Leopold.

— ,dBIGGER =

D

P 0
s 0
_D'_)O_
P
s—0
_D'_)l_
(L1
s—0

_DHO_
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- We could also do it the other way round: have the function apply to the
second argument and yield a function that applies to the first argument.

- Think of our syntactic tree.

- When applied to Leopold, let {" yield a function that maps any goat to 1if it
is bigger than Leopold.

i (L 071] i (L 0]]
L—[s—0 L |se1
D0 D1
(L1 (L 0]
f’BIGGERz s |se0|| — facern=|S~|s»0
D1 | D 0]
(L1 (L 0]
D |sH—0 D |seH1
i | D 0] i | D 0]
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THE A-CALCULUS (A.K.A. A-ABSTRACTION)

- We now turn to the second technical matter.

- We add some very special operators, lambdas (1), to our system in order to
simplify it.

- The A operator applies to a function in order to describe it.
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THE A-CALCULUS (A.K.A. A-ABSTRACTION)

- Before we move onto this, let’s recall our CHARg-notation for intransitive
verDs.

(17) [Annsnores] = [snores](Ann) = 1(iff Ann actually snores)

- What about transitive verbs?

(18) [Annlovesjan] = (two notations)
a. [loves](Ann)(Jan) = 1(iff Annactually loves Jan)
b. [loves](Ann,Jan) = 1(iff Annactually loves Jan)
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THE A-CALCULUS (A.K.A. A-ABSTRACTION)

Imagine we were interpreting an expression containing just the two words:
noun Maggie and verb love(s)
- We first need to construct a tree. In our case, there are two possible
trees since something is missing.

(19) (20)

loves ? loves Maggie
denotes the characteristic denotes the characteristic
function of the set of individuals function of the set of individuals
that Maggie loves. that love Maggie.
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- Very loosely, a A-formula specifies the conditions that need to be met under
which the functionis true.

- Averb like smoke makes sense (itis or can be true) only if there a single
argument which can saturate its meaning.

(21) [smokes] = ...
(22) Ax.[smokes](x) = ...

- The last notation can be read 'if there was an x, [smoke] could be true!
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- If @ is an expression denoting a function, and x is an expression that is of the
right type to be used as an argument to ¢, then ¢(x) denotes the result of
applying ¢ to x (saturation).

For example
Expression BORED(x) denotes the result of applying the function denoted by
bored to the value of x.
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Another example

(23) [)\X.LOVES(l\/laggie)(x)](BilI)

- 23 denotes the result of applying the function is loved by Maggie to Bill.
- Thisis then equivalent to (24)

(24) Loves(Maggie)(Bill)

- where Bill replaced the placeholder x.
- This ‘conversion’ process is known as 6-conversion or 6-reduction.
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A-ABSTRACTION WITH NUMBERS: A SKETCH

- We all remember formulae like (25) from high school.

(25) f(x)=x+7
a. Nowletx =5.

b. Thenwe have:
f(X)=x+7~f(5)=5+7

- (25)isthe same as (27)

(26)  a. f(x)=x+7 ~w xx+7
b. [Axx+7](5) ~» 5+7
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A-ABSTRACTION WITH NUMBERS: A SKETCH

(27) a. f(x)=x+7~ xx+7
b. [AXx.x+7](5) ~~5+7

- That's all A-abstraction is:
- abstraction with a A-clause specifies the conditions under which the
value description (27a)
- B-reduction (6-conversion), reduces or converts the variable x into
whatever value we feed it — in our case, numbers.
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QUESTIONS?



EXERCISES



EXERCISE: CONVERT SETS INTO A-FUNCTIONS

(28) 29€e{xeN:x+0}iff29+0

(29) Massachusetts € {x € D : California is a western state} = D iff California
isa Western state.

(30) {x € D: Californiaisa western state} = Dif California is a western state.

(31 {x e D:Californiaisawestern state} = @ if Californiais not a western
state.

(32) {xeN:x#0}={yeN:y=+0}
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EXERCISE: SIMPLY THE A-EXPRESSIONS

(33) [Ax € D[Ay € D[Az € D.zintroduced x to y]]](Ann)(Sue)
(34) [&xeN[lyeNy>3andy<7](x)]1]
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