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MINIMAL REVISION

- Sets

-X€EA

- @ cA(foranyA)

- Set-relations, Venn diagrams
- Functions (blackboard)

- Questions?
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- Frege construed unsaturated meanings as functions.

2/44



QUICK THROWBACK TO FREGE

- Frege construed unsaturated meanings as functions.

- Functions are relations of mapping between a domain and a range. Or,
functions are sets of ordered pairs.

2/44



QUICK THROWBACK TO FREGE

- Frege construed unsaturated meanings as functions.

- Functions are relations of mapping between a domain and a range. Or,
functions are sets of ordered pairs.

. How can unsaturated meanings be analysed as sets of ordered pairs? Pairs
of what? (Hm.)
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FREGE'S CONJECTURE
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Function application = an application of function. (Go figure.)
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FREGE'S CONJECTURE

Meaning composition is function application.

Function application = an application of function. (Go figure.)

But how? Think of what a function s ...

If unsaturated meanings are functions, then what is theirdomain and
range?

To understand this, we'll take an excursus.

344



EXTENSION G FIRST APPLICATION




EXTENSION G FIRST APPLICATION

EXTENSION



EXTENSION

An extension of a sentence is its truth-value.

What s a truth-value? How many values can truth have?

4/44



EXTENSION

An extension of a sentence is its truth-value.

What s a truth-value? How many values can truth have?

Extension: whatis said extends into the real world and bounces back as
either or

4/44



EXTENSION

An extension of a sentence is its truth-value.

What s a truth-value? How many values can truth have?

Extension: whatis said extends into the real world and bounces back as
either or

Meaning is then extension! Another word we'll use instead of ‘'meaning

4/44



EXTENSION

An extension of a sentence is its truth-value.

What s a truth-value? How many values can truth have?

Extension: whatis said extends into the real world and bounces back as
either or

Meaning is then extension! Another word we'll use instead of ‘'meaning

1 a x=x

b. [x] = (meaning)

4/44



- Technically, [ Jisafunction, more precisely, itisan interpretation
function.

- It takes something and returns its meaning.
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- Technically, [ Jisafunction, more precisely, itisan interpretation
function.

- It takes something and returns its meaning.

- More importantly: it takes something linguistic and returns
something actual.

- Romantically, then[ ] : WORDS = MEANING

- [ 1isthusthe great (one-directional!) truth-translator.
- We will be interpreting English using extensional semantics.
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EXTENSION

A sentence can be true (1) or false (0).
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EXTENSION

- Asentence can be true (1) or false (0).
- Cana proper name be true or false?
- If sentences 'extend' to truth-values, what do names 'extend' to?

1 iff Annsmokes
() a. [Annsmokes] = { 0 igAnn does not smoke
b. [Ann] = Ann
- Names mean things. Smart talk: names denote individuals in the world.
- Canyou see how we could now get closer to the meaning of the verb
smokes? Try figure it out, in groups.
- (3 min. discussion)
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EXTENSION: AN INVENTORY OF DENOTATIONS

Let D be the set of all individuals that exist in the real world. (D stands for
domain.)
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EXTENSION: AN INVENTORY OF DENOTATIONS

Let D be the set of all individuals that exist in the real world. (D stands for
domain.)

(@: how would we define the set D?)

- Possible denotations:

- Elements of D, the set of actual individuals. names
- Elements of {0, 1}, the set of truth-values. sentences
- Functionsfrom D to {0, 1}. everything else

- Back to smoking: what does smokes denote?
- Answer: a function fromDto {0, 1}
- Could we write it more formally?

7/44



TOWARDS A RECIPE FOR MEANING

- Our semantic theory will need three components. We already introduced
one.

i. Inventory of denotations (3 of those.)
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TOWARDS A RECIPE FOR MEANING

- Our semantic theory will need three components. We already introduced

one.

Inventory of denotations (3 of those.)
Lexicon (For terminal nodes only; we automatically know the denotation type of

words.)
Rules of composition, a.k.a., rules for non-terminal nodes’' (We'll need some

syntax now.)
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TOWARDS A RECIPE FOR MEANING: EXAMPLES

Inventory of denotations Lexicon
- Elements of D, thesetofac- - Proper names:
tual individuals. - [Ann] =Ann
- Elementsof {0,1}, the set of - [Bill] =Bill
truth-values. - Intransitive verbs:
- Functions fromDto {0,1}. - [smokes] =f: D+~ {0,1}

Forallx € D, f(x) = Liffx smokes
- [works] =f: D~ {0,1}
Forallx € D, f(x) = Liffx works
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- Fornow, we'll be working with sentences that
contain a proper name as a subject and an
intransitive verb.

- Such sentences associate with a syntactic structure
on theright.
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SOME SYNTAX

- Fornow, we'll be working with sentences that /S\
contain a proper name as a subject and an
. i NP VP
intransitive verb.

- Such sentences associate with a syntactic structure vV

on theright.

Ann smokes
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SOME SYNTAX

- Asentence S comprises a subject, which isa Noun /S\
Phrase NP, and a verb, which is actually a Verb
NP VP
Phrase VP. ‘ ‘
- Every phrase has a head, so NP contains a noun N vV
head, N, and the VP contains a verb head, V. ‘ ‘
- That's the syntax we need for now. Ann smokes
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SOME SYNTAX: STRUCTURAL RELATIONS

- Let'sintroduce three simple structural relations: >
motherhood «is 6's mother (=mother node) if & immediately /\
dominates 8. List some motherhood relations. VP
daughterhood GBis o's daugher (=daughter node) if a ‘ ‘
immediately dominates 6. List some motherhood N \Vi
relations. ‘ ‘
sisterhood «is (s sister (and vice versa)if bothaand Bare ~ Ann smokes

immediately dominated by y. List the one sisterhood
relation.
- And two more pairs of concept:
non/terminal node has (no) daughters.
non-branching node has (no) sisters.

12/44



INTERPRETING TREES

NP

|

(3) a.[Ann] = N
|

n

Ann
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INTERPRETING TREES

NP VP
| |
(3) a.[Ann] =| N b. [smokes] = vV
| |
Ann smokes
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INTERPRETING TREES

NP VP
| |
(3) a.[Ann] =| N b. [smokes] = vV
| |
Ann smokes
_ ‘ .
/\
NP VP

(4) [Annsmokes] = | |
\ \Y
| |
n

L Ann smokes ||
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RULES FOR INTERPRETING TREES

- Fornow, there are only two rules for interpreting trees, depending on
whether the sub/tree is non/branching:

Rule #1 Rule #2
In a non-branching node, the In a (binary) branching node, the
denotation of the daughter is inherited denotation of the motheris the
by the mother. functional application of its daughters.
[a] - [l
| N
I > 160 Myl
Iyl B

lad = 160(1yD)
[a] = 161 = yI
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RULES FOR INTERPRETING TREES

- Fornow, there are only two rules for interpreting trees, depending on
whether the sub/tree is non/branching:

Rule #1
In a non-branching node, the
denotation of the daughter is inherited
by the mother.

[a] <.
\ :

161 -+

L

~- Iyl
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APPLYING THE INTERPRETATION RULES TO TREES

- Let's try calculating the meaning of "Ann smokes” then.

- Before we do, let's recall Frege's unsaturated meanings. Is there an
unsaturated meaning in "Ann smokes"?

- Yes. It's the verb smokes. If unsaturated meanings are functions, then
smokes is a function, as we already learnt.

- What kind of a function?

- Well, it takes individuals, like Ann, and returns (=its values are) truth-values.

- The extension of of an intransitive verb like "smoke”, then, should be a
function from individuals to truth-values.

15/44



APPLYING THE INTERPRETATION RULES TO TREES

S ' [S]
N S
NP VP INP] [VP]
= | |
N Vv INT V1
| |
| Ann smokes | [Ann] [smokes]
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APPLYING THE INTERPRETATION RULES TO TREES

[s]

- Lexicon: denotation of [Ann] [[Nmp]]

| |
[NI VI
| |

[Ann] [smokes]
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APPLYING THE INTERPRETATION RULES TO TREES

[s1

- Lexicon: denotation of [Ann] [[Nﬁp]]

| |
[NI [v1
| |

Ann  [smokes]
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APPLYING THE INTERPRETATION RULES TO TREES

[S]
Lexicon: denotation of [Ann] [NP] [VP]
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APPLYING THE INTERPRETATION RULES TO TREES

[ST
/\
- Lexicon: denotation of [Ann] [NP] [VP]
- Lexicon: denotation of [smokes] | |
[N] IV
| f:Dw{0,1}
Ann Forallxe D

f(x) = Liff x smokes
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APPLYING THE INTERPRETATION RULES TO TREES

- Lexicon: denotation of [Ann] [5]
- Lexicon: denotation of [smokes] /\
- Composition rule: non-branching ‘
nodes inherit the denotations from ‘
their daughters. This happens | f:Dw{0,1}

twice, for both the NP and the VP. Ann Forallx e D
f(x) = Liff x smokes
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APPLYING THE INTERPRETATION RULES TO TREES

- Lexicon: denotation of [Ann] fF:O?a?;O’]lj} (Ann) 1
E =

- Lexicon: denotation of [smokes] f(x) = Liff x smokes
- Composition rule: non-branching
nodes inherit the denotations from ‘ ‘
their daughters. This happens

twice, for both the NP and the VP.

- Composition rule: branching
nodes as FA at S-level.

|
| f:Dw {0,1}
Ann Forallx e D
f(x) = 1iff x smokes

17/44



EXTENSION G FIRST APPLICATION

BACK TO TRUTH-CONDITIONS



DERIVING TRUTH-CONDITIONS IN AN EXTENSIONAL SEMANTICS

- Suppose Ann, Jan, and Maria are the only individuals in the actual world.
- Ann and Jan are the only smokers.
- The extension of the verb "smoke” can, in this world, be displayed as follows:

Ann - 1
[smokes] =| Jan+~1
Maria = 0
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- Suppose Ann, Jan, and Maria are the only individuals in the actual world.
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- The extension of the verb "smoke” can, in this world, be displayed as follows:

VP
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SETS AND THEIR CHARACTERISTIC FUNCTIONS

- We have construed the meaning of intransitive verbs as functions from a set
of individuals to a set of truth values.
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SETS AND THEIR CHARACTERISTIC FUNCTIONS

We have construed the meaning of intransitive verbs as functions from a set
of individuals to a set of truth values.
Alternatively, the meaning of intransitive verbs can be construed simply as a
set.
- Intuition: an intransitive verb denotes the set of individuals that it is
true of.

a. LetAbea set. Then cHARy, the characteristic function of A, is that function
f:
| 1 foranyxeA
o) = { 0 foranyx¢A

b. Letfbeafunctionwithrange{0,1}. Then CHARf, the set characterised by f,

is{xeD: f(x) =1} 19/44



SETS AND THEIR CHARACTERISTIC FUNCTIONS: AN EXAMPLE

Context

Let our universe contain only three individuals: {Ann, Jan, Maria}. Suppose
that Ann and Jan are the only ones who sleep, and Ann is the only one who
snores.

If intransitive verbs denote sets, then sleep and snore denote the following:
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SETS AND THEIR CHARACTERISTIC FUNCTIONS: AN EXAMPLE

Context

Let our universe contain only three individuals: {Ann, Jan, Maria}. Suppose
that Ann and Jan are the only ones who sleep, and Ann is the only one who
snores.

If intransitive verbs denote sets, then sleep and snore denote the following:

(5) a. [sleep] = {Ann,Jan}
b. [snore] = {Ann}
(6) a. Ann € [sleep]
b. [snore] < [sleep]
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SETS AND THEIR CHARACTERISTIC FUNCTIONS: AN EXAMPLE

Same context. If intransitive verbs denote characteristic functions (CHARy),
then the following are denotations of sleep and snore.
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SETS AND THEIR CHARACTERISTIC FUNCTIONS: AN EXAMPLE

Same context. If intransitive verbs denote characteristic functions (CHARy),
then the following are denotations of sleep and snore.

Ann - 1
(7) a. [sleep] =| Janm1
Maria ~ 0

Ann -1
b. [snore] =| Jan~0
Maria ~ 0
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SETS AND THEIR CHARACTERISTIC FUNCTIONS: INTERIM SUMMARY
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SETS AND THEIR CHARACTERISTIC FUNCTIONS: INTERIM SUMMARY

- We will adopt the CHARs notation and conception (right column) and drop
basic set notation.

Old system New system
[[VINTR =1] Set CHARf
[Annsleeps] = Ann € [sleep] [sleep](Ann) =1
Setrel. [snore] c [sleep] {x:[snore](x) =1} c

{x: [sleep](x) = 1}
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WHAT ABOUT TRANSITIVE VERBS?

(9) Annsmokes. () S

(10) Annlikes Jan. N

NP VPP
VAN
N \V NP
I

Ann likes N

Jan

- How do we define the meaning of likes, given what we know about the
meaning of an intransitive verb like smokes?

23/44
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(12) [smokes] =f:Dw~ {0,1}
Forallx € D, f(x) = Liffx smokes
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(15) [likes] =f: D~ {g: gisafunctionfromD ~ {0,1}}
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forma VP (hence it needs a meanings).
- Recall branching-node meaning and the inventory of meanings ...
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WHAT ABOUT TRANSITIVE VERBS?

(12) [smokes] =f:Dw~ {0,1}
Forallx € D, f(x) = Liffx smokes

(13) [likes]=g:Dwf

(14) [likes] =g:Dw+ D~ {0.1}

(15) [likes] =f: D~ {g: gisafunctionfromD ~ {0,1}}
Forallx,y € D, f(x)(y) = Liffxlikesy

- Thislogicisin line with the syntax: V first combines with the direct object to
forma VP (hence it needs a meanings).

- Recall branching-node meaning and the inventory of meanings ...(What's
different here?)

24144



REVISITING DENOTATION INVENTORY AND A MILD INTRO TO TYPES

Domain of individuals
eis the type of individuals (entities), where Dg := D.
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REVISITING DENOTATION INVENTORY AND A MILD INTRO TO TYPES

Domain of individuals
eis the type of individuals (entities), where Dg := D.

Domain of truth-values
tisthe type of truth values, where Dy := {0,1}.

e and tare basic types and
What, then, are unsaturated meanings?
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REVISITING DENOTATION INVENTORY AND A MILD INTRO TO TYPES

They are of derived types for various functions.

a. Diey := {f: fisafunction from De ~ Dy}
b. Die ety := {f: fisafunction from De + Diety}

C.

26/44



TYPES G DOMAINS: AN INTERIM SUMMARY
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b. If 0and T are semantic types, then (g, T) is a semantic type.
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TYPES G DOMAINS: AN INTERIM SUMMARY

a. eandtaresemantic types.

b. If 0and T are semantic types, then (g, T) is a semantic type. (Why not just say if e

and tare semantic types, ..."?)

C. Nothingelseisasemantic type.

a. De:=D (the set of )
b. Dy :={0,1} (the set of )
c. Forany semantic types gdand T, Dg ¢y is the set of

27/44
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TYPES G DOMAINS: AN INTERIM SUMMARY

- So far, we've come across four denotation types:

- typee (example: names)
- type (e, t) (example: intransitive Vs)
- type (e, (e, t)) (example: transitive Vs)
- typet (example: sentences)

28/44



THE ROAD AHEAD

- We've covered a conceptually vast, yet relatively simple, metalinguistic
system with(in) which we can analyse meanings.
- We now have two more technical matters to address:
- One will decompose 2-place functions (=transitive Vs) and make sense
of them in terms of the system we've been developing.
- Another will simplify the technical issues with the way we've been
writing down functions. It will make life easier. And it makes much

sense.

29/44
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SCHONFINKELISATION

- We need a bit more maths to synthesise the last portion of slides and
understand trans-Vs as 2-place functions.

- Recall our three general assumptions:
Binary branching In the syntax, trans-Vs combine with the direct object to
forma VP, and VPs combine with the subject to form a sentence.
Locality Semantic interpretation rules are local: the denotation of any

non-terminal node is computed from the denotation of its daughter
nodes.

Frege's conjecture Semantic composition isfunctional application.
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Let our domain D contain just the three goats Sebastian, Dimitri, and Leopold.
Sebastian is the biggest and Leopold the smallest. The relation “is-bigger-than”
is then the following set of ordered pairs:
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Let our domain D contain just the three goats Sebastian, Dimitri, and Leopold.
Sebastian is the biggest and Leopold the smallest. The relation “is-bigger-than”
is then the following set of ordered pairs:

(Sebastian, Dimitri),
(16) Rgccer = § (Sebastian, Leopold),
(Dimitri, Leopold)

- Thereis a correspondence between sets and their characteristic functions.
- What is the functional version of Rg,cger? (3MinNs)

3144



- The resulting function fsccer iS @ 2-place function.

- Moses Schonfinkel, a logician, showed that n-place functions are reducible
to 1-place function.

- This reduction is Schonfinkelisation.
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(Ls)y~0 (L 0]
(Lp)~0 L—|sH0
(LLy~0 D0
(s,L) =1 (L 1]
fBIGGER =[(sD)~1| — )dBmGER =|sH|sH—0
(s,s)~ 0 D1
(D.L) ~1 (L1
(D,s)~0 D~ |S—0
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fBIGGER =

UU_U’_U’U\_I_J__I_

N o~ o~ o~ o~~~

. fBIGGER isafunction that applies to the first arg. and yields a function that

applies to the second arg.

- When applied to Leopold, it yields a function that maps any goat to1if it is

smaller than Leopold.

— ,dBIGGER =

D

-
s 0
_D'_)O_
T
s—0
_D'_)l_
(L1
s—0

_DHO_
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- We could also do it the other way round: have the function apply to the
second argument and yield a function that applies to the first argument.

- Think of our syntactic tree.

- When applied to Leopold, let {" yield a function that maps any goat to 1if it
is bigger than Leopold.
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- We could also do it the other way round: have the function apply to the
second argument and yield a function that applies to the first argument.

- Think of our syntactic tree.

- When applied to Leopold, let {" yield a function that maps any goat to 1if it
is bigger than Leopold.

i (L 071] i (L 0]]
L—>[s—0 L |se1
D0 | D1
(L1 XN
f’BIGGERz s |se 0| | — facern=|S~|s»0
D1 D 0]
(L1 (L 0]
D |[s—0 Db |s—1
i | D 0] i | D 0]
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THE A-CALCULUS (A.K.A. A-ABSTRACTION)

- We now turn to the second technical matter.

- We add some very special operators, lambdas (1), to our system in order to
simplify it.
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THE A-CALCULUS (A.K.A. A-ABSTRACTION)

- We now turn to the second technical matter.

- We add some very special operators, lambdas (1), to our system in order to
simplify it.

- The A operator applies to a function in order to describe it.
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- Before we move onto this, let’s recall our CHARg-notation for intransitive
verDs.
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THE A-CALCULUS (A.K.A. A-ABSTRACTION)

- Before we move onto this, let’s recall our CHARg-notation for intransitive
verDs.

(17) [Annsnores] = [snores](Ann) = 1(iff Ann actually snores)

- What about transitive verbs?

(18) [Annlovesjan] = (two notations)
a. [loves](Ann)(Jan) = L(iff Annactually loves Jan)
b. [loves](Ann,jan) = 1(iff Annactually loves Jan)

36/44



THE A-CALCULUS (A.K.A. A-ABSTRACTION)

Imagine we were interpreting an expression containing just the two words:
noun Maggie and verb love(s)
- We first need to construct a tree. In our case, there are two possible
trees since something is missing.

(19) (20)

loves ? loves Maggie
denotes the characteristic denotes the characteristic
function of the set of individuals function of the set of individuals
that Maggie loves. that love Maggie.
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- Very loosely, a A-formula specifies the conditions that need to be met under
which the functionis true.
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- Very loosely, a A-formula specifies the conditions that need to be met under
which the functionis true.

- Averb like smoke makes sense (it is or can be true) only if there a single
argument which can saturate its meaning.

(21) [smokes] = ...
(22) Ax.[smokes](x) = ...

- The last notation can be read 'if there was an x, [smoke] could be true!

3844



- If @ is an expression denoting a function, and x is an expression that is of the
right type to be used as an argument to ¢, then ¢(x) denotes the result of
applying ¢ to x (saturation).
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- If @ is an expression denoting a function, and x is an expression that is of the
right type to be used as an argument to ¢, then ¢(x) denotes the result of
applying ¢ to x (saturation).

Expression BORED(x) denotes the result of applying the function denoted by
bored to the value of x.
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(23) [AX.LOVEs(Maggie)(x)](am)

- 23 denotes the result of applying the function is loved by Maggie to Bill.
- Thisis then equivalent to (24)

(24) Loves(Maggie)(Bill)

- where Bill replaced the placeholder x.
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(23) [Ax.LOVEs(Maggie)(x)](em)

- 23 denotes the result of applying the function is loved by Maggie to Bill.
- Thisis then equivalent to (24)

(24) Loves(Maggie)(Bill)

- where Bill replaced the placeholder x.
- This ‘conversion' process is known as 6-conversion or 6-reduction.
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A-ABSTRACTION WITH NUMBERS: A SKETCH

- We all remember formulae like (25) from high school.

(25) f(x)=x+7
a. Nowletx =5.

b. Then we have:
f(xX)=x+7~f(5)=5+7

- (25)isthe same as (27)

(26)  a. f(x) =x+7 ~w xx+7
b. [Axx+7]

41/44



A-ABSTRACTION WITH NUMBERS: A SKETCH

- We all remember formulae like (25) from high school.

(25) f(x)=x+7
a. Nowletx =5.

b. Then we have:
f(xX)=x+7~f(5)=5+7

- (25)isthe same as (27)

(26)  a. f(x) =x+7 ~w xx+7
b. [Axx+7](5)

41/44



A-ABSTRACTION WITH NUMBERS: A SKETCH

- We all remember formulae like (25) from high school.

(25) f(x)=x+7
a. Nowletx =5.
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A-ABSTRACTION WITH NUMBERS: A SKETCH

(27) a. f(x)=x+7~ xx+7
b. [AXx.x+7](5) ~~»5+7

- That's all A-abstraction is:
- abstraction with a A-clause specifies the conditions under which the
value description (27a)
- B-reduction (6-conversion), reduces or converts the variable x into
whatever value we feed it — in our case, numbers.
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EXERCISE: CONVERT SETS INTO A-FUNCTIONS

(28) 29€e{xeN:x+0}iff29+0

(29) Massachusetts € {x € D : California is a western state} = D iff California
isa Western state.

(30) {x € D: Californiaisa western state} = Dif California is a western state.

(31) {x e D:Californiaisawestern state} = @ if California is not a western
state.

(32) {xeN:x#0}={yeN:y=+0}
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EXERCISE: SIMPLY THE A-EXPRESSIONS

(33) [Ax € D[Ay € D[Az € D.zintroduced x to y]]](Ann)(Sue)
(34) [&xeN[lyeNy>3andy<7](x)]1]

44144
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