EXECUTING THE FREGEAN PROGRAMME

LECTURE 3

Moreno Mitrović

The HU Lectures on Formal Semantics

MINIMAL REVISION

Sets

- $\cdot x \in A$
- $\cdot \ \emptyset \subseteq A (\text{for any } A)$
- Set-relations, Venn diagrams
- Functions (blackboard)
- Questions?

RECAP

QUICK THROWBACK TO FREGE

• Frege construed unsaturated meanings as functions.

QUICK THROWBACK TO FREGE

- Frege construed unsaturated meanings as functions.
- Functions are relations of mapping between a domain and a range. Or, functions are sets of ordered pairs.

QUICK THROWBACK TO FREGE

- Frege construed unsaturated meanings as functions.
- Functions are relations of mapping between a domain and a range. Or, functions are sets of ordered pairs.
- How can unsaturated meanings be analysed as sets of ordered pairs? Pairs of what? (Hm.)

Frege's conjecture: what was it?

Meaning composition is function application.

• Function application = an application of function. (Go figure.)

Frege's conjecture: what was it?

Meaning composition is function application.

- Function application = an application of function. (Go figure.)
- But how? Think of what a function is ...

Frege's conjecture: what was it?

Meaning composition is function application.

- Function application = an application of function. (Go figure.)
- But how? Think of what a function is ...
- If unsaturated meanings are functions, then what is their domain and range?

Frege's conjecture: what was it?

Meaning composition is function application.

- Function application = an application of function. (Go figure.)
- But how? Think of what a function is ...
- If unsaturated meanings are functions, then what is their **domain** and **range**?
- To understand this, we'll take an excursus.

EXTENSION & FIRST APPLICATION

EXTENSION & FIRST APPLICATION

Extension: what is it?

An extension of a sentence is its truth-value.

• What is a truth-value? How many values can truth have?

Extension: what is it?

An extension of a sentence is its truth-value.

- What is a truth-value? How many values can truth have?
- Extension: what is said **extends** into the **real world** and bounces back as **either true or false.**

Extension: what is it?

An extension of a sentence is its truth-value.

- What is a truth-value? How many values can truth have?
- Extension: what is said **extends** into the **real world** and bounces back as **either true or false.**
- Meaning is then extension! Another word we'll use instead of 'meaning': denotation.

Extension: what is it?

An extension of a sentence is its truth-value.

- What is a truth-value? How many values can truth have?
- Extension: what is said **extends** into the **real world** and bounces back as **either true or false.**
- Meaning is then extension! Another word we'll use instead of 'meaning': denotation.

(1) a. x = x

b. [x] = the denotation (meaning) of x

EXTENSION AND [

- Technically, [] is a function, more precisely, it is an interpretation function.
 - It takes something and returns its meaning.

EXTENSION AND [

- Technically, [] is a function, more precisely, it is an interpretation function.
 - It takes something and returns its meaning.
 - More importantly: it takes **something linguistic** and returns **something actual**.

EXTENSION AND [[]]

- Technically, [] is a function, more precisely, it is an interpretation function.
 - It takes something and returns its meaning.
 - More importantly: it takes **something linguistic** and returns **something actual**.
 - Romantically, then []: words \mapsto meaning
- [] is thus the great (one-directional!) truth-translator.

EXTENSION AND [

- Technically, [] is a function, more precisely, it is an interpretation function.
 - It takes something and returns its meaning.
 - More importantly: it takes **something linguistic** and returns **something actual**.
 - Romantically, then []: words → meaning
- [] is thus the great (one-directional!) truth-translator.
- We will be interpreting English using extensional semantics.

• A sentence can be true (1) or false (0).

- A **sentence** can be <u>true</u> (1) or <u>false</u> (0).
- Can a proper name be true or false?

- A **sentence** can be <u>true</u> (1) or <u>false</u> (0).
- Can a proper name be true or false?
- If sentences 'extend' to truth-values, what do names 'extend' to?

- A **sentence** can be <u>true</u> (1) or <u>false</u> (0).
- Can a proper name be true or false?
- · If sentences 'extend' to truth-values, what do names 'extend' to?

```
(2) a. [Ann smokes] = \begin{cases} 1 & \text{iff Ann smokes} \end{cases}
```

- A **sentence** can be <u>true</u> (1) or <u>false</u> (0).
- Can a proper name be true or false?
- If sentences 'extend' to truth-values, what do names 'extend' to?

(2) a. **[Ann smokes]** =
$$\begin{cases} 1 & \text{iff Ann smokes} \\ 0 & \text{iff Ann does not smoke} \end{cases}$$

- A **sentence** can be <u>true</u> (1) or <u>false</u> (0).
- Can a proper name be true or false?
- · If sentences 'extend' to truth-values, what do names 'extend' to?

(2) a. **[Ann smokes]** =
$$\begin{cases} 1 & \text{iff Ann smokes} \\ 0 & \text{iff Ann does not smoke} \\ b. [Ann] = ? \end{cases}$$

• Names mean things. Smart talk: names denote individuals in the world.

- A **sentence** can be <u>true</u> (1) or <u>false</u> (0).
- Can a proper name be true or false?
- · If sentences 'extend' to truth-values, what do names 'extend' to?

(2) a. **[[Ann smokes]]** =
$$\begin{cases} 1 & iff Ann smokes \\ 0 & iff Ann does not smoke \\ 0 & iff Ann does not smoke \end{cases}$$

- b. **[[Ann]] = Ann**
- Names mean things. Smart talk: names denote individuals in the world.
- Can you see how we could now get closer to the meaning of the verb smokes? Try figure it out, in groups.

- A **sentence** can be <u>true</u> (1) or <u>false</u> (0).
- Can a proper name be true or false?
- · If sentences 'extend' to truth-values, what do names 'extend' to?

(2) a. **[[Ann smokes]]** =
$$\begin{cases} 1 & iff Ann smokes \\ 0 & iff Ann does not smoke \\ 0 & iff Ann does not smoke \end{cases}$$

- D. **[[Ann]]** = Ann
- Names mean things. Smart talk: names denote individuals in the world.
- Can you see how we could now get closer to the meaning of the verb smokes? Try figure it out, in groups.
- (3 min. discussion)

Let *D* be **the set of all individuals that exist in the real world**. (*D* stands for **domain**.)

Let *D* be **the set of all individuals that exist in the real world**. (*D* stands for **domain**.)

(Q: how would we define the set D?)

Let *D* be **the set of all individuals that exist in the real world**. (*D* stands for **domain**.)

(Q: how would we define the set D?)

Possible denotations:

Let D be **the set of all individuals that exist in the real world**. (D stands for **domain**.)

(Q: how would we define the set D?)

- Possible denotations:
 - Elements of D, the set of actual individuals.

Let *D* be **the set of all individuals that exist in the real world**. (*D* stands for **domain**.)

(Q: how would we define the set D?)

- Possible denotations:
 - Elements of *D*, the set of actual individuals.

names

Let *D* be **the set of all individuals that exist in the real world**. (*D* stands for **domain**.)

(Q: how would we define the set D?)

- Possible denotations:
 - Elements of *D*, the set of actual individuals.

names

• Elements of $\{0,1\}$, the set of truth-values.

Let *D* be **the set of all individuals that exist in the real world**. (*D* stands for **domain**.)

(Q: how would we define the set D?)

- Possible denotations:
 - Elements of *D*, the set of actual individuals.
 - Elements of $\{0,1\}$, the set of truth-values.

names sentences

Let *D* be **the set of all individuals that exist in the real world**. (*D* stands for **domain**.)

(Q: how would we define the set D?)

- Possible denotations:
 - Elements of *D*, the set of actual individuals.
 - Elements of $\{0,1\}$, the set of truth-values.
 - Functions from D to $\{0,1\}$.

names sentences everything else

Let *D* be **the set of all individuals that exist in the real world**. (*D* stands for **domain**.)

(Q: how would we define the set D?)

- Possible denotations:
 - Elements of *D*, the set of actual individuals.
 - Elements of $\{0,1\}$, the set of truth-values.
 - Functions from D to $\{0,1\}$.

names sentences everything else

• Back to **smoking**: what does **smokes** denote?

Let *D* be **the set of all individuals that exist in the real world**. (*D* stands for **domain**.)

(Q: how would we define the set D?)

- Possible denotations:
 - Elements of *D*, the set of actual individuals.
 - Elements of $\{0,1\}$, the set of truth-values.
 - Functions from D to $\{0,1\}$.

• Back to smoking: what does smokes denote?

• Answer: a function from D to $\{0,1\}$

na	mes
sente	nces
verything	else

Let *D* be **the set of all individuals that exist in the real world**. (*D* stands for **domain**.)

(Q: how would we define the set D?)

- Possible denotations:
 - Elements of *D*, the set of actual individuals.
 - Elements of $\{0,1\}$, the set of truth-values.
 - Functions from D to $\{0,1\}$.
- Back to smoking: what does smokes denote?
- Answer: a function from D to {0,1}
- Could we write it more formally?

names sentences everything else

TOWARDS A RECIPE FOR MEANING

- Our semantic theory will need **three components**. We already introduced one.
- i. Inventory of denotations (3 of those.)

TOWARDS A RECIPE FOR MEANING

- Our semantic theory will need **three components**. We already introduced one.
- i. Inventory of denotations (3 of those.)
- Lexicon (For terminal nodes only; we automatically know the denotation type of words.)

TOWARDS A RECIPE FOR MEANING

- Our semantic theory will need **three components**. We already introduced one.
- i. Inventory of denotations (3 of those.)
- ii. Lexicon (For terminal nodes only; we automatically know the denotation type of words.)
- iii. Rules of composition, a.k.a., rules for 'non-terminal nodes' (We'll need some syntax now.)

Inventory of denotations

Lexicon

- Elements of D, the set of ac tual individuals.
- Elements of {0,1}, the set of truth-values.
- Functions from *D* to {0,1}.

- Proper names:
 - **[[Ann]]** =Ann
 - **[[Bill]]** =Bill
- Intransitive verbs:
 - $[smokes]] = f: D \mapsto \{0, 1\}$ For all $x \in D, f(x) = 1$ iff x smokes
 - $\llbracket works \rrbracket = f : D \mapsto \{0, 1\}$ For all $x \in D, f(x) = 1$ iff x works

EXTENSION & FIRST APPLICATION

Some syntax

- For now, we'll be working with sentences that contain a proper name as a subject and an intransitive verb.
- Such sentences associate with a syntactic structure on the right.

- For now, we'll be working with sentences that contain a proper name as a subject and an intransitive verb.
- Such sentences associate with a syntactic structure on the right.

- A sentence S comprises a subject, which is a Noun Phrase NP, and a verb, which is actually a Verb Phrase VP.
- Every phrase has a head, so **NP** contains a noun head, **N**, and the **VP** contains a verb head, **V**.
- That's the syntax we need for now.

SOME SYNTAX: STRUCTURAL RELATIONS

 Let's introduce three simple structural relations: motherhood α is β's mother (=mother node) if α immediately dominates β. List some motherhood relations.
 daughterhood β is α's daugher (=daughter node) if α immediately dominates β. List some motherhood relations.

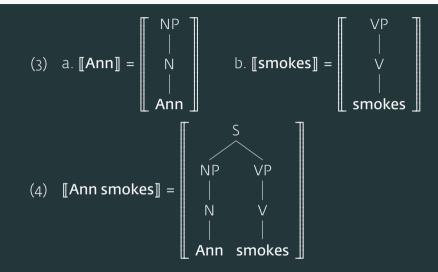
- sisterhood α is β 's sister (and vice versa) if both α and β are immediately dominated by γ . List the one sisterhood relation.
- And two more pairs of concept: non/terminal node has (no) daughters.
 non-branching node has (no) sisters.

INTERPRETING TREES

INTERPRETING TREES

(3) a.
$$[Ann]] = \begin{bmatrix} NP \\ | \\ N \\ | \\ Ann \end{bmatrix}$$
 b. $[smokes]] = \begin{bmatrix} VP \\ | \\ V \\ | \\ smokes \end{bmatrix}$

INTERPRETING TREES



• For now, there are only two rules for interpreting trees, depending on whether the sub/tree is non/branching:

Rule #1

In a non-branching node, the denotation of the daughter is inherited by the mother. [[\alpha]] [\begin{bmatrix} \begin{bmatrix} \begin{bmatrix

 $\llbracket v \rrbracket$

 $\lceil \alpha \rceil = \lceil \beta \rceil = \lceil v \rceil$

Rule #2

In a (binary) branching node, the denotation of the mother is the functional application of its daughters.

• For now, there are only two rules for interpreting trees, depending on whether the sub/tree is non/branching:

Rule #1

In a non-branching node, the denotation of the daughter is inherited by the mother. **[**α**]**

[[B]]

 $\llbracket v \rrbracket$

 $\llbracket \alpha \rrbracket = \llbracket \beta \rrbracket = \llbracket v \rrbracket$

Rule #2

In a (binary) branching node, the denotation of the mother is the functional application of its daughters.

• For now, there are only two rules for interpreting trees, depending on whether the sub/tree is non/branching:

Rule #1

In a non-branching node, the denotation of the daughter is inherited by the mother.

• For now, there are only two rules for interpreting trees, depending on whether the sub/tree is non/branching:

Rule #1

In a non-branching node, the denotation of the daughter is inherited by the mother.

 $\llbracket \alpha \rrbracket = \llbracket \beta \rrbracket = \llbracket \gamma \rrbracket$

Rule #2

In a (binary) branching node, the denotation of the mother is the functional application of its daughters.

 $\llbracket \alpha \rrbracket = \llbracket \beta \rrbracket (\llbracket \gamma \rrbracket)$

• For now, there are only two rules for interpreting trees, depending on whether the sub/tree is non/branching:

Rule #1

In a non-branching node, the denotation of the daughter is inherited by the mother.

 $\llbracket \alpha \rrbracket = \llbracket \beta \rrbracket = \llbracket \gamma \rrbracket$

Rule #2

In a (binary) branching node, the denotation of the mother is the functional application of its daughters.

 $\llbracket \alpha \rrbracket = \llbracket \beta \rrbracket (\llbracket \gamma \rrbracket)$

• For now, there are only two rules for interpreting trees, depending on whether the sub/tree is non/branching:

Rule #1

In a non-branching node, the denotation of the daughter is inherited by the mother.

 $\llbracket \alpha \rrbracket = \llbracket \beta \rrbracket = \llbracket \gamma \rrbracket$

Rule #2

In a (binary) branching node, the denotation of the mother is the functional application of its daughters.

• For now, there are only two rules for interpreting trees, depending on whether the sub/tree is non/branching:

Rule #1

In a non-branching node, the denotation of the daughter is inherited by the mother.

 $\llbracket \alpha \rrbracket = \llbracket \beta \rrbracket = \llbracket \gamma \rrbracket$

Rule #2

In a (binary) branching node, the denotation of the mother is the functional application of its daughters.

 $\llbracket \alpha \rrbracket = \llbracket \beta \rrbracket (\llbracket \gamma \rrbracket)$

• Let's try calculating the meaning of "Ann smokes" then.

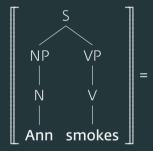
- Let's try calculating the meaning of "Ann smokes" then.
- Before we do, let's recall Frege's unsaturated meanings. Is there an unsaturated meaning in "Ann smokes"?

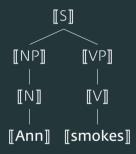
- Let's try calculating the meaning of "Ann smokes" then.
- Before we do, let's recall Frege's unsaturated meanings. Is there an unsaturated meaning in "**Ann smokes**"?
- Yes. It's the verb **smokes**. If unsaturated meanings are functions, then **smokes** is a function, as we already learnt.

- Let's try calculating the meaning of "Ann smokes" then.
- Before we do, let's recall Frege's unsaturated meanings. Is there an unsaturated meaning in "**Ann smokes**"?
- Yes. It's the verb **smokes**. If unsaturated meanings are functions, then **smokes** is a function, as we already learnt.
- What kind of a function?

- Let's try calculating the meaning of "Ann smokes" then.
- Before we do, let's recall Frege's unsaturated meanings. Is there an unsaturated meaning in "**Ann smokes**"?
- Yes. It's the verb **smokes**. If unsaturated meanings are functions, then **smokes** is a function, as we already learnt.
- What kind of a function?
- Well, it takes individuals, like Ann, and returns (=its values are) truth-values.

- Let's try calculating the meaning of "Ann smokes" then.
- Before we do, let's recall Frege's unsaturated meanings. Is there an unsaturated meaning in "**Ann smokes**"?
- Yes. It's the verb **smokes**. If unsaturated meanings are functions, then **smokes** is a function, as we already learnt.
- What kind of a function?
- Well, it takes individuals, like Ann, and returns (=its values are) truth-values.
- The extension of of an intransitive verb like "smoke", then, should be a function from individuals to truth-values.





Lexicon: denotation of [Ann]

[S] [NP] [VP] | | [N] [V] | | [Ann] [smokes]

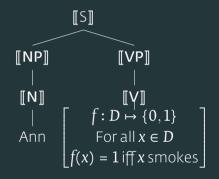
Lexicon: denotation of [Ann]

[S] [NP] [VP] | | [N] [V] | | Ann [smokes]

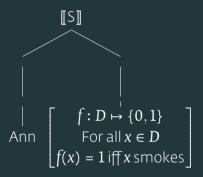
- Lexicon: denotation of [Ann]
- Lexicon: denotation of [[smokes]]

- Lexicon: denotation of [Ann]
- Lexicon: denotation of [[smokes]]

- Lexicon: denotation of [[Ann]]
- Lexicon: denotation of [[smokes]]



- Lexicon: denotation of [Ann]
- Lexicon: denotation of [[smokes]]
- **Composition rule**: non-branching nodes inherit the denotations from their daughters. This happens twice, for both the **NP** and the **VP**.



APPLYING THE INTERPRETATION RULES TO TREES

- Lexicon: denotation of [[Ann]]
- Lexicon: denotation of [[smokes]]
- **Composition rule**: non-branching nodes inherit the denotations from their daughters. This happens twice, for both the **NP** and the **VP**.
- Composition rule: branching nodes as FA at S-level.

$f: D \mapsto \{$ For all x f(x) = 1 iff x	$\in D$	$\left(\operatorname{Ann} ight)$ = 1
 Ann	For a	$\mapsto \{0,1\}$ all $x \in D$ ff x smokes

EXTENSION & FIRST APPLICATION

BACK TO TRUTH-CONDITIONS

- Suppose Ann, Jan, and Maria are the only individuals in the actual world.
- Ann and Jan are the only smokers.
- The extension of the verb "smoke" can, in this world, be displayed as follows:

$$\llbracket smokes \rrbracket = \begin{bmatrix} Ann \mapsto 1 \\ Jan \mapsto 1 \\ Maria \mapsto 0 \end{bmatrix}$$

- Suppose Ann, Jan, and Maria are the only individuals in the actual world.
- Ann and Jan are the only smokers.
- The extension of the verb "smoke" can, in this world, be displayed as follows:

$$\llbracket smokes \rrbracket = \begin{bmatrix} Ann \mapsto 1 \\ Jan \mapsto 1 \\ Maria \mapsto 0 \end{bmatrix}$$

- Suppose Ann, Jan, and Maria are the only individuals in the actual world.
- Ann and Jan are the only smokers.
- The extension of the verb "smoke" can, in this world, be displayed as follows:

$$\begin{bmatrix} \nabla P \\ | \\ \nabla \\ | \\ | \\ smokes \end{bmatrix} = \begin{bmatrix} Ann \mapsto 1 \\ Jan \mapsto 1 \\ Maria \mapsto 0 \end{bmatrix}$$

- Suppose Ann, Jan, and Maria are the only individuals in the actual world.
- Ann and Jan are the only smokers.
- The extension of the verb "smoke" can, in this world, be displayed as follows:

$$\begin{bmatrix} \nabla P \\ | \\ \nabla \\ | \\ | \\ | \\ smokes \end{bmatrix} (Ann) = \begin{bmatrix} Ann \mapsto 1 \\ Jan \mapsto 1 \\ Maria \mapsto 0 \end{bmatrix}$$

- Suppose Ann, Jan, and Maria are the only individuals in the actual world.
- Ann and Jan are the only smokers.
- The extension of the verb "smoke" can, in this world, be displayed as follows:

$$\begin{bmatrix} \nabla P \\ | \\ \nabla \\ | \\ | \\ smokes \end{bmatrix} (Ann) = \begin{bmatrix} Ann \mapsto 1 \\ Jan \mapsto 1 \\ Maria \mapsto 0 \end{bmatrix} (Ann)$$

- Suppose Ann, Jan, and Maria are the only individuals in the actual world.
- Ann and Jan are the only smokers.
- The extension of the verb "smoke" can, in this world, be displayed as follows:

$$\begin{bmatrix} VP \\ | \\ V \\ | \\ | \\ | \\ mokes \end{bmatrix} (Ann) = \begin{bmatrix} Ann \mapsto 1 \\ Jan \mapsto 1 \\ Maria \mapsto 0 \end{bmatrix} (Ann) = 1$$

EXTENSION & FIRST APPLICATION

CHARACTERISTIC FUNCTIONS

• We have construed the meaning of intransitive verbs as functions from a set of individuals to a set of truth values.

- We have construed the meaning of intransitive verbs as functions from a set of individuals to a set of truth values.
- Alternatively, the meaning of intransitive verbs can be construed simply as a set.
 - Intuition: an intransitive verb denotes the set of individuals that it is true of.

- We have construed the meaning of intransitive verbs as functions from a set of individuals to a set of truth values.
- Alternatively, the meaning of intransitive verbs can be construed simply as a set.
 - Intuition: an intransitive verb denotes the set of individuals that it is true of.

Characteristic function

a. Let *A* be a set. Then CHAR_f, the **characteristic function** of *A*, is that function *f*: $f(x) = \begin{cases} 1 & \text{for any } x \in A \\ \end{cases}$

- We have construed the meaning of intransitive verbs as functions from a set of individuals to a set of truth values.
- Alternatively, the meaning of intransitive verbs can be construed simply as a set.
 - Intuition: an intransitive verb denotes the set of individuals that it is true of.

Characteristic function

a. Let A be a set. Then CHAR_f, the **characteristic function** of A, is that function f: $f(x) = \begin{cases} 1 & \text{for any } x \in A \\ 0 & \text{for any } x \notin A \end{cases}$

- We have construed the meaning of intransitive verbs as functions from a set of individuals to a set of truth values.
- Alternatively, the meaning of intransitive verbs can be construed simply as a set.
 - Intuition: an intransitive verb denotes the set of individuals that it is true of.

Characteristic function

- a. Let A be a set. Then CHAR_f, the **characteristic function** of A, is that function f: $f(x) = \begin{cases} 1 & \text{for any } x \in A \\ 0 & \text{for any } x \notin A \end{cases}$
- b. Let \hat{f} be a function with range $\{0,1\}$. Then $CHAR_f$, the set characterised by f, is $\{x \in D : f(x) = 1\}$

SETS AND THEIR CHARACTERISTIC FUNCTIONS: AN EXAMPLE

Context

Let our universe contain only three individuals: {Ann, Jan, Maria}. Suppose that Ann and Jan are the only ones who sleep, and Ann is the only one who snores.

Example: set treatment

If intransitive verbs denote sets, then sleep and snore denote the following:

SETS AND THEIR CHARACTERISTIC FUNCTIONS: AN EXAMPLE

Context

Let our universe contain only three individuals: {Ann, Jan, Maria}. Suppose that Ann and Jan are the only ones who sleep, and Ann is the only one who snores.

Example: set treatment

If intransitive verbs denote sets, then sleep and snore denote the following:

- (5) a. **[[sleep]]** = {Ann,Jan}
 - b. **[[snore]]** = {Ann}
- (6) a. Ann ∈ **[[sleep]**]
 - b. **[[snore]]** ⊆ **[[sleep]]**

SETS AND THEIR CHARACTERISTIC FUNCTIONS: AN EXAMPLE

Example: снак_f treatment

Example: CHAR_f treatment

(7) a.
$$[sleep] = \begin{bmatrix} Ann \mapsto 1 \\ Jan \mapsto 1 \\ Maria \mapsto 0 \end{bmatrix}$$

Example: CHAR_f treatment

(7) a. **[[sleep]]** =
$$\begin{bmatrix} Ann \mapsto 1 \\ Jan \mapsto 1 \\ Maria \mapsto 0 \end{bmatrix}$$

b. **[[snore]]** =
$$\begin{bmatrix} Ann \mapsto 1 \\ Jan \mapsto 0 \\ Maria \mapsto 0 \end{bmatrix}$$

Example: CHAR_f treatment

(7) a.
$$[sleep] = \begin{bmatrix} Ann \mapsto 1 \\ Jan \mapsto 1 \\ Maria \mapsto 0 \end{bmatrix}$$

b. $[snore] = \begin{bmatrix} Ann \mapsto 1 \\ Jan \mapsto 0 \\ Jan \mapsto 0 \\ Maria \mapsto 0 \end{bmatrix}$

- (8) Are the following now true?
 - a. Ann ∈ **[[sleep]]**

Example: снак_f treatment

(7) a.
$$[sleep] = \begin{bmatrix} Ann \mapsto 1 \\ Jan \mapsto 1 \\ Maria \mapsto 0 \end{bmatrix}$$

b. $[snore] = \begin{bmatrix} Ann \mapsto 1 \\ Jan \mapsto 0 \\ Jan \mapsto 0 \\ Maria \mapsto 0 \end{bmatrix}$

- (8) Are the following now true?
 - a. Ann ∈ **[[sleep]]**
 - b. **[[snore]]** ⊆ **[[sleep]]**

Example: снак_f treatment

Same context. If intransitive verbs denote characteristic functions ($CHAR_f$), then the following are denotations of **sleep** and **snore**.

(7) a.
$$[sleep] = \begin{bmatrix} Ann \mapsto 1 \\ Jan \mapsto 1 \\ Maria \mapsto 0 \end{bmatrix}$$

b. $[snore] = \begin{bmatrix} Ann \mapsto 1 \\ Jan \mapsto 0 \\ Jan \mapsto 0 \\ Maria \mapsto 0 \end{bmatrix}$

- (8) Are the following now true?
 - a. Ann ∈ **[[sleep]]**
 - b. **[[snore]]** ⊆ **[[sleep]]**

(NO)

(NO)

SETS AND THEIR CHARACTERISTIC FUNCTIONS: INTERIM SUMMARY

• We will adopt the сная notation and conception (right column) and drop basic set notation.

	Old system	New system
[[V _{intr} =]]	Set	CHAR _f

SETS AND THEIR CHARACTERISTIC FUNCTIONS: INTERIM SUMMARY

• We will adopt the сная notation and conception (right column) and drop basic set notation.

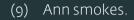
	Old system	New system
[[V _{INTR} =]]	Set	снаr _f
[[Ann sleeps]] =	Ann ∈ [[sleep]]	[[sleep]] (Ann) = 1

SETS AND THEIR CHARACTERISTIC FUNCTIONS: INTERIM SUMMARY

• We will adopt the сная notation and conception (right column) and drop basic set notation.

	Old system	New system
[[V _{INTR} =]]	Set	CHAR _f
[Ann sleeps]] =	Ann ∈ [[sleep]]	[[sleep]](Ann) = 1
Set rel.	[[snore]] ⊆ [[sleep]]	$\{x : [[snore]](x) = 1\} \subseteq \{x : [[sleep]](x) = 1\}$

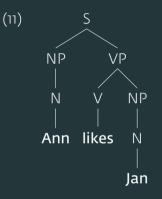
ADDING TRANSITIVE VERBS



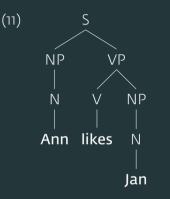
(9) Ann smokes.(10) Ann likes Jan.

23/44

(9) Ann smokes.(10) Ann likes Jan.



(9) Ann smokes.(10) Ann likes Jan.



• How do we define the meaning of **likes**, given what we know about the meaning of an intransitive verb like **smokes**?

(12) $[[smokes]] = f : D \mapsto \{0, 1\}$ For all $x \in D$, f(x) = 1 iff x smokes

(12) $[[smokes]] = f : D \mapsto \{0, 1\}$ For all $x \in D$, f(x) = 1 iff x smokes

(13) **[[likes]]** =

(12) $[[smokes]] = f : D \mapsto \{0, 1\}$ For all $x \in D$, f(x) = 1 iff x smokes

(13) **[[likes]]** = g:

- (12) $[[smokes]] = f : D \mapsto \{0, 1\}$ For all $x \in D$, f(x) = 1 iff x smokes
- (13) $\llbracket \text{likes} \rrbracket = g : D \mapsto f$
- (14) **[[likes]]** =

- (12) $[[smokes]] = f : D \mapsto \{0, 1\}$ For all $x \in D$, f(x) = 1 iff x smokes
- (13) $\llbracket \text{likes} \rrbracket = g : D \mapsto f$
- (14) **[[likes]]** = g:

- (12) $[[smokes]] = f : D \mapsto \{0, 1\}$ For all $x \in D$, f(x) = 1 iff x smokes
- (13) $\llbracket \text{likes} \rrbracket = g : D \mapsto f$
- (14) $\llbracket \text{likes} \rrbracket = g : D \mapsto D \mapsto \{0, 1\}$

- (12) $[[smokes]] = f : D \mapsto \{0, 1\}$ For all $x \in D$, f(x) = 1 iff x smokes
- (13) $\llbracket \text{likes} \rrbracket = g : D \mapsto f$
- (14) $\llbracket \text{likes} \rrbracket = g : D \mapsto D \mapsto \{0, 1\}$
- (15) **[likes]** = $f: D \mapsto \{g : g \text{ is a function from } D \mapsto$

- (12) $[[smokes]] = f : D \mapsto \{0, 1\}$ For all $x \in D$, f(x) = 1 iff x smokes
- (13) $\llbracket \text{likes} \rrbracket = g : D \mapsto f$
- (14) $\llbracket \text{likes} \rrbracket = g : D \mapsto D \mapsto \{0, 1\}$
- (15) $\llbracket \text{likes} \rrbracket = f : D \mapsto \{g : g \text{ is a function from } D \mapsto \{0, 1\}\}$ For all $x, y \in D, f(x)(y) = 1$ iff x likes y

- (12) $[[smokes]] = f : D \mapsto \{0, 1\}$ For all $x \in D$, f(x) = 1 iff x smokes
- (13) $\llbracket \text{likes} \rrbracket = g : D \mapsto f$
- (14) $\llbracket \text{likes} \rrbracket = g : D \mapsto D \mapsto \{0, 1\}$
- (15) $\llbracket \text{likes} \rrbracket = f : D \mapsto \{g : g \text{ is a function from } D \mapsto \{0, 1\}\}$ For all $x, y \in D, f(x)(y) = 1 \text{ iff } x \text{ likes } y$
 - This logic is in line with the syntax: V first combines with the direct object to form a VP (hence it needs a meanings).
 - Recall branching-node meaning and the inventory of meanings ...

- (12) $[[smokes]] = f : D \mapsto \{0, 1\}$ For all $x \in D$, f(x) = 1 iff x smokes
- (13) $\llbracket \text{likes} \rrbracket = g : D \mapsto f$
- (14) $\llbracket \text{likes} \rrbracket = g : D \mapsto D \mapsto \{0, 1\}$
- (15) $\llbracket \text{likes} \rrbracket = f : D \mapsto \{g : g \text{ is a function from } D \mapsto \{0, 1\}\}$ For all $x, y \in D, f(x)(y) = 1 \text{ iff } x \text{ likes } y$
 - This logic is in line with the syntax: V first combines with the direct object to form a VP (hence it needs a meanings).
 - Recall branching-node meaning and the inventory of meanings ...(What's different here?)

REVISITING DENOTATION INVENTORY AND A MILD INTRO TO TYPES

Domain of individuals

e is the type of individuals (**e**ntities), where $D_e := D$.

REVISITING DENOTATION INVENTORY AND A MILD INTRO TO TYPES

Domain of individuals

e is the type of individuals (**e**ntities), where $D_e := D$.

Domain of truth-values t is the type of **t**ruth values, where $D_t := \{0, 1\}$.

Domain of individuals

e is the type of individuals (**e**ntities), where $D_e := D$.

Domain of truth-values

t is the type of truth values, where $D_t := \{0, 1\}$.

- e and t are basic types and correspond to Frege's saturated meanings.
- What, then, are unsaturated meanings?

REVISITING DENOTATION INVENTORY AND A MILD INTRO TO TYPES

• They are of derived types for various functions.

REVISITING DENOTATION INVENTORY AND A MILD INTRO TO TYPES

• They are of derived types for various functions.

Domains of derived types

- a. $D_{\langle \mathbf{e}, \mathbf{t} \rangle} := \{ f : f \text{ is a function from } D_{\mathbf{e}} \mapsto D_{\mathbf{t}} \}$
- b. $D_{\langle \mathbf{e}, \langle \mathbf{e}, \mathbf{t} \rangle \rangle} := \{ f : f \text{ is a function from } D_{\mathbf{e}} \mapsto D_{\langle \mathbf{e}, \mathbf{t} \rangle} \}$

С. ...

Semantic types

- a. **e** and **t** are semantic types.
- b. If σ and τ are semantic types, then $\langle \sigma, \tau \rangle$ is a semantic type.

Semantic types

- a. **e** and **t** are semantic types.
- b. If σ and τ are semantic types, then $\langle \sigma, \tau \rangle$ is a semantic type. (Why not just say 'if **e** and **t** are semantic types, ...'?)
- c. Nothing else is a semantic type.

Semantic types

- a. **e** and **t** are semantic types.
- b. If σ and τ are semantic types, then $\langle \sigma, \tau \rangle$ is a semantic type. (Why not just say 'if **e** and **t** are semantic types, ...'?)
- c. Nothing else is a semantic type.

Semantic denotation domains

- a. $D_e := D$
- b. $D_t := \{0, 1\}$

(the set of individuals)

- (the set of truth-values)
- c. For any semantic types σ and τ , $D_{\langle \sigma, \tau \rangle}$ is **the set of all functions from** D_{σ} **to** D_{τ} .

- So far, we've come across four denotation types:
 - type **e**

- So far, we've come across four denotation types:
 - type **e**

(example:

- So far, we've come across four denotation types:
 - type **e**
 - \cdot type $\langle e, t \rangle$

(example: names)

- So far, we've come across four denotation types:
 - type **e**
 - $\cdot \text{ type } \langle \mathbf{e}, \mathbf{t} \rangle$

(example: names) (example:

- So far, we've come across four denotation types:
 - type **e**
 - \cdot type $\langle e, t \rangle$
 - \cdot type $\langle e, \langle e, t \rangle \rangle$

(example: names) (example: intransitive Vs)

- So far, we've come across four denotation types:
 - type **e**
 - \cdot type $\langle e, t \rangle$
 - \cdot type $\langle e, \langle e, t \rangle \rangle$

(example: names) (example: intransitive Vs) (example:

- So far, we've come across four denotation types:
 - type **e**
 - \cdot type $\langle e, t \rangle$
 - \cdot type $\langle \mathbf{e}, \langle \mathbf{e}, \mathbf{t} \rangle \rangle$
 - type t

(example: names) (example: intransitive Vs) (example: transitive Vs)

- So far, we've come across four denotation types:
 - type **e**
 - \cdot type $\langle \mathbf{e}, \mathbf{t} \rangle$
 - \cdot type $\langle e, \langle e, t \rangle \rangle$
 - type t

(example: names) (example: intransitive Vs) (example: transitive Vs) (example:

- So far, we've come across four denotation types:
 - type **e**
 - \cdot type $\langle \mathbf{e}, \mathbf{t} \rangle$
 - \cdot type $\langle e, \langle e, t \rangle \rangle$
 - type t

(example: names) (example: intransitive Vs) (example: transitive Vs) (example: sentences)

THE ROAD AHEAD

- We've covered a conceptually vast, yet relatively simple, metalinguistic system with(in) which we can analyse meanings.
- We now have **two more technical matters** to address:
 - One will decompose 2-place functions (=transitive Vs) and make sense of them in terms of the system we've been developing.
 - Another will simplify the technical issues with the way we've been writing down functions. It will make life easier. And it makes much sense.

SCHÖNFINKELISATION

SCHÖNFINKELISATION

- We need a bit more maths to synthesise the last portion of slides and understand trans-Vs as 2-place functions.
- Recall our three general assumptions:

Binary branching In the syntax, trans-Vs combine with the direct object to form a VP, and VPs combine with the subject to form a sentence.
Locality Semantic interpretation rules are local: the denotation of any non-terminal node is computed from the denotation of its daughter nodes.

Frege's conjecture Semantic composition is functional application.

Example

Let our domain **D** contain just the three goats Sebastian, Dimitri, and Leopold. Sebastian is the biggest and Leopold the smallest. The relation "is-bigger-than" is then the following set of ordered pairs:

Example

Let our domain **D** contain just the three goats Sebastian, Dimitri, and Leopold. Sebastian is the biggest and Leopold the smallest. The relation "is-bigger-than" is then the following set of ordered pairs:

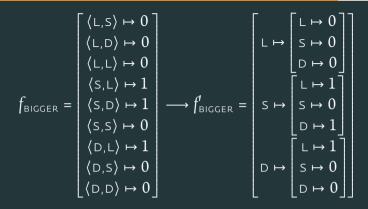
(16) $R_{BIGGER} = \begin{cases} \langle Sebastian, Dimitri \rangle, \\ \langle Sebastian, Leopold \rangle, \\ \langle Dimitri, Leopold \rangle \end{cases}$

- There is a correspondence between sets and their characteristic functions.
- What is the functional version of $R_{\scriptscriptstyle BIGGER}$? (3mins)

- The resulting function f_{BIGGER} is a **2-place function**.
- Moses Schönfinkel, a logician, showed that *n*-place functions are **reducible to 1-place function**.
- This reduction is Schönfinkelisation.

$$f_{\text{BIGGER}} = \begin{bmatrix} \langle L, S \rangle \mapsto 0 \\ \langle L, D \rangle \mapsto 0 \\ \langle L, L \rangle \mapsto 0 \\ \langle S, L \rangle \mapsto 1 \\ \langle S, D \rangle \mapsto 1 \\ \langle S, S \rangle \mapsto 0 \\ \langle D, L \rangle \mapsto 1 \\ \langle D, S \rangle \mapsto 0 \\ \langle D, D \rangle \mapsto 0 \end{bmatrix}$$

$$f_{\text{BIGGER}} = \begin{bmatrix} \langle L, S \rangle \mapsto 0 \\ \langle L, D \rangle \mapsto 0 \\ \langle L, L \rangle \mapsto 0 \\ \langle S, L \rangle \mapsto 1 \\ \langle S, D \rangle \mapsto 1 \\ \langle S, S \rangle \mapsto 0 \\ \langle D, L \rangle \mapsto 1 \\ \langle D, S \rangle \mapsto 0 \\ \langle D, D \rangle \mapsto 0 \end{bmatrix} \longrightarrow f_{\text{BIGGER}}^{\dagger} = \begin{bmatrix} L \mapsto 0 \\ S \mapsto 0 \\ D \mapsto 0 \\ L \mapsto 1 \\ S \mapsto 0 \\ D \mapsto 1 \\ L \mapsto 1 \\ S \mapsto 0 \\ D \mapsto 0 \end{bmatrix}$$



- \int_{BIGGER}^{r} is a function that applies to the first arg. and yields a function that applies to the second arg.
- When applied to Leopold, it yields a function that maps any goat to 1 if it is smaller than Leopold.

- We could also do it the other way round: have the function apply to the second argument and yield a function that applies to the first argument.
- Think of our syntactic tree.
- When applied to Leopold, let f'' yield a function that maps any goat to 1 if it is bigger than Leopold.

- We could also do it the other way round: have the function apply to the second argument and yield a function that applies to the first argument.
- Think of our syntactic tree.
- When applied to Leopold, let f'' yield a function that maps any goat to 1 if it is bigger than Leopold.

$$f_{\text{BIGGER}}^{\text{t}} = \begin{bmatrix} L \mapsto 0 \\ S \mapsto 0 \\ D \mapsto 0 \end{bmatrix}$$
$$S \mapsto \begin{bmatrix} L \mapsto 1 \\ S \mapsto 0 \\ D \mapsto 1 \end{bmatrix}$$
$$L \mapsto 1$$
$$S \mapsto 0 \\ D \mapsto 1 \end{bmatrix}$$
$$S \mapsto 0 \\ D \mapsto 0 \end{bmatrix}$$

- We could also do it the other way round: have the function apply to the second argument and yield a function that applies to the first argument.
- Think of our syntactic tree.
- When applied to Leopold, let f'' yield a function that maps any goat to 1 if it is bigger than Leopold.

	「	「∟ ↦ 0]]		Γ	$\left[\sqcup \mapsto 0 \right] \right]$
f ¹ bigger =		「∟ ↦ 0 s ↦ 0	→ f [″] _{bigger} =	L↦	s ⊷ 1
		_□ ↦ 0			$[D \mapsto 1]$
	S ↦	[L ↦ 1]		S ↦	「∟ ↦ 0
		s			s ⊷ 0
		$[D \mapsto 1]$			_□ ↦ 0
	D ↔	「 L ↦ 1]			「∟ ↦ 0]
		s ⊷ 0			s ⊷ 1
		[□ ↦ 0]]			[□ ↦ 0]]

THE λ-calculus

- We now turn to the second technical matter.
- We add some very special operators, lambdas (λ), to our system in order to simplify it.

- We now turn to the second technical matter.
- We add some very special operators, **lambdas** (λ), to our system in order to simplify it.
- The λ operator applies to a function in order to describe it.

the λ -calculus (a.k.a. λ -abstraction)

 Before we move onto this, let's recall our сная record out of the second second

the λ -calculus (a.k.a. λ -abstraction)

- Before we move onto this, let's recall our CHAR_f-notation for intransitive verbs.
- (17) [Ann snores] = [snores](Ann) = 1 (iff Ann actually snores)
 - What about transitive verbs?

the $\lambda\text{-calculus}$ (a.k.a. $\lambda\text{-abstraction})$

- Before we move onto this, let's recall our CHAR_f-notation for intransitive verbs.
- (17) [Ann snores] = [snores](Ann) = 1 (iff Ann actually snores)
- What about transitive verbs?
- (18) **[[Ann loves Jan]]** =

(two notations)

a. [loves](Ann)(Jan) = 1 (iff Ann actually loves Jan)

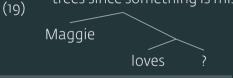
the $\lambda\text{-calculus}$ (a.k.a. $\lambda\text{-abstraction}$)

- Before we move onto this, let's recall our CHAR_f-notation for intransitive verbs.
- (17) [Ann snores] = [snores](Ann) = 1 (iff Ann actually snores)
- What about transitive verbs?
- (18) **[[Ann loves Jan]]** =
 - a. [loves](Ann)(Jan) = 1 (iff Ann actually loves Jan)
 - b. [[loves]](Ann, Jan) = 1 (iff Ann actually loves Jan)

(two notations)

the λ -calculus (a.k.a. λ -abstraction)

- Imagine we were interpreting an expression containing just the two words: noun **Maggie** and verb **love(s)**
 - We first need to construct a tree. In our case, there are two possible trees since something is missing. (20)



λx .LOVES(Mary, x)

denotes the characteristic function of the set of individuals that **Maggie loves**.

λx .LOVES(x, Maggie)

denotes the characteristic function of the set of individuals that **love Maggie**.

loves

Maggie

• Very loosely, a λ -formula specifies the conditions that need to be met under which the function is true.

- Very loosely, a λ -formula specifies the conditions that need to be met under which the function is true.
- A verb like **smoke** makes sense (it is or can be true) **only if there a single argument which can saturate its meaning**.

- Very loosely, a λ -formula specifies the conditions that need to be met under which the function is true.
- A verb like **smoke** makes sense (it is or can be true) **only if there a single argument which can saturate its meaning**.
- (21) [[smokes]] = ...

- Very loosely, a λ -formula specifies the conditions that need to be met under which the function is true.
- A verb like **smoke** makes sense (it is or can be true) **only if there a single argument which can saturate its meaning**.
- (21) [[smokes]] = ...
- (22) $\lambda x.[[smokes]](x) = ...$

- Very loosely, a λ -formula specifies the conditions that need to be met under which the function is true.
- A verb like **smoke** makes sense (it is or can be true) **only if there a single argument which can saturate its meaning**.
- (21) **[**smokes**]** = ...
- (22) $\lambda x.[[smokes]](x) = ...$
 - The last notation can be read 'if there was an x, [[smoke]] could be true.'

• If φ is an expression denoting a function, and x is an expression that is of the right type to be used as an argument to φ , then $\varphi(x)$ denotes the result of applying φ to x (saturation).

• If φ is an expression denoting a function, and x is an expression that is of the right type to be used as an argument to φ , then $\varphi(x)$ denotes the result of applying φ to x (saturation).

For example

Expression BORED(*x*) denotes the result of applying the function denoted by **bored** to the value of *x*.

40/44

Another example

(23) $\left[\lambda x.LOVES(Maggie)(x)\right]$

Another example

(23) $\left[\lambda x.LOVES(Maggie)(x)\right]$ (Bill)

- 23 denotes the result of applying the function is loved by Maggie to Bill.
- This is then equivalent to (24)

(24) LOVES(Maggie)(Bill)

• where **Bill** replaced the placeholder *x*.

Another example

(23) $\left[\lambda x. LOVES(Maggie)(x)\right]$ (Bill)

- 23 denotes the result of applying the function is loved by Maggie to Bill.
- This is then equivalent to (24)

(24) LOVES(Maggie)(Bill)

- where **Bill** replaced the placeholder *x*.
- This 'conversion' process is known as β -conversion or β -reduction.

$\lambda\text{-}abstraction$ with numbers: a sketch

- We all remember formulae like (25) from high school.
- (25) f(x) = x + 7
 - a. Now let x = 5.
 - b. Then we have: $f(x) = x + 7 \rightsquigarrow f(5) = 5 + 7$
 - (25) is the same as (27)
- (26) a. $f(x) = x + 7 \rightsquigarrow \lambda x.x + 7$ b. $[\lambda x.x + 7]$

λ -abstraction with numbers: a sketch

- We all remember formulae like (25) from high school.
- (25) f(x) = x + 7
 - a. Now let x = 5.
 - b. Then we have: $f(x) = x + 7 \rightsquigarrow f(5) = 5 + 7$
 - (25) is the same as (27)
- (26) a. $f(x) = x + 7 \rightsquigarrow \lambda x.x + 7$ b. $[\lambda x.x + 7](5)$

λ -abstraction with numbers: a sketch

- We all remember formulae like (25) from high school.
- (25) f(x) = x + 7
 - a. Now let x = 5.
 - b. Then we have: $f(x) = x + 7 \rightsquigarrow f(5) = 5 + 7$
 - (25) is the same as (27)
- (26) a. $f(x) = x + 7 \rightsquigarrow \lambda x.x + 7$ b. $[\lambda x.x + 7](5) \rightsquigarrow 5 + 7$

(27) a. $f(x) = x + 7 \rightsquigarrow \lambda x.x + 7$ b. $[\lambda x.x + 7]$

(27) a.
$$f(x) = x + 7 \rightsquigarrow \lambda x.x + 7$$

b. $[\lambda x.x + 7](5)$

- (27) a. $f(x) = x + 7 \rightsquigarrow \lambda x.x + 7$ b. $[\lambda x.x + 7](5) \rightsquigarrow 5 + 7$
 - That's all λ-abstraction is:
 - abstraction with a λ -clause specifies the conditions under which the value description (27a)
 - β -reduction (β -conversion), reduces or converts the variable *x* into whatever value we feed it in our case, number 5.

QUESTIONS?

EXERCISES

- $(28) \quad 29 \in \{x \in \mathbb{N} : x \neq 0\} \text{ iff } 29 \neq 0$
- (29) Massachusetts $\in \{x \in D : California is a western state\} = D iff California is a Western state.$
- (30) $\{x \in D : California is a western state\} = D if California is a western state.$
- (31) $\{x \in D : California is a western state\} = \emptyset$ if California is not a western state.
- (32) $\{x \in \mathbb{N} : x \neq 0\} = \{y \in \mathbb{N} : y \neq 0\}$

(33) $[\lambda x \in D[\lambda y \in D[\lambda z \in D.z \text{ introduced } x \text{ to } y]]](Ann)(Sue)$ (34) $[\lambda x \in \mathbb{N}[\lambda y \in \mathbb{N}.y > 3 \text{ and } y < 7](x)]]$