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The HU Lectures on Formal Semantics



mınımal revısıon

⋅ Sets

⋅ x ∈ A
⋅ ∅ ⊆ A (for any A)
⋅ Set-relations, Venn diagrams

⋅ Functions (blackboard)

⋅ Questions?
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frege’s conjecture



frege’s conjecture

recap



quıck throwback to frege

⋅ Frege construed unsaturatedmeanings as functions.

⋅ Functions are relations ofmapping between a domain and a range. Or,
functions are sets of ordered pairs.

∴ How can unsaturatedmeanings be analysed as sets of ordered pairs? Pairs
of what? (Hm.)
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frege’s conjecture

Frege’s conjecture: what was it?

Meaning composition is function application.

⋅ Function application = an application of function. (Go figure.)

⋅ But how? Think of what a function is …

⋅ If unsaturatedmeanings are functions, thenwhat is their domain and
range?

⋅ To understand this, we’ll take an excursus.
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extensıon

Extension: what is it?
An extension of a sentence is its truth-value.

⋅ What is a truth-value? Howmany values can truth have?

⋅ Extension: what is said extends into the real world and bounces back as
either true or false.

⋅ Meaning is then extension! Another wordwe’ll use instead of ’meaning’:
denotation.

(1) a. x = x
b. ⟦x⟧ = the denotation (meaning) of x
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extensıon and ⟦ ⟧
⋅ Technically, ⟦ ⟧ is a function, more precisely, it is an interpretation
function.

⋅ It takes something and returns its meaning.

⋅ More importantly: it takes something linguistic and returns
something actual.

⋅ Romantically, then ⟦ ⟧ ∶ words↦ meanıng

⋅ ⟦ ⟧ is thus the great (one-directional!) truth-translator.
⋅ Wewill be interpreting English using extensional semantics.
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extensıon

⋅ A sentence can be true (1) or false (0).

⋅ Can a proper name be true or false?

⋅ If sentences ’extend’ to truth-values, what do names ’extend’ to?

(2) a. ⟦Ann smokes⟧ = { 1 iff Ann smokes
0 iff Ann does not smoke

b. ⟦Ann⟧ =

⋅ Namesmean things. Smart talk: names denote individuals in theworld.

⋅ Can you see howwe could now get closer to themeaning of the verb
smokes? Try figure it out, in groups.

⋅ (3min. discussion)
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extensıon: an ınventory of denotatıons

LetD be the set of all individuals that exist in the real world. (D stands for
domain.)

(q: howwouldwe define the setD?)

⋅ Possible denotations:

⋅ Elements ofD, the set of actual individuals. names
⋅ Elements of {0, 1}, the set of truth-values. sentences
⋅ Functions fromD to {0, 1}. everything else

⋅ Back to smoking: what does smokes denote?

⋅ Answer: a function fromD to {0, 1}
⋅ Couldwewrite it more formally?

7/44



extensıon: an ınventory of denotatıons

LetD be the set of all individuals that exist in the real world. (D stands for
domain.)

(q: howwouldwe define the setD?)

⋅ Possible denotations:

⋅ Elements ofD, the set of actual individuals. names
⋅ Elements of {0, 1}, the set of truth-values. sentences
⋅ Functions fromD to {0, 1}. everything else

⋅ Back to smoking: what does smokes denote?

⋅ Answer: a function fromD to {0, 1}
⋅ Couldwewrite it more formally?

7/44



extensıon: an ınventory of denotatıons

LetD be the set of all individuals that exist in the real world. (D stands for
domain.)

(q: howwouldwe define the setD?)

⋅ Possible denotations:

⋅ Elements ofD, the set of actual individuals. names
⋅ Elements of {0, 1}, the set of truth-values. sentences
⋅ Functions fromD to {0, 1}. everything else

⋅ Back to smoking: what does smokes denote?

⋅ Answer: a function fromD to {0, 1}
⋅ Couldwewrite it more formally?

7/44



extensıon: an ınventory of denotatıons

LetD be the set of all individuals that exist in the real world. (D stands for
domain.)

(q: howwouldwe define the setD?)

⋅ Possible denotations:

⋅ Elements ofD, the set of actual individuals.

names
⋅ Elements of {0, 1}, the set of truth-values. sentences
⋅ Functions fromD to {0, 1}. everything else

⋅ Back to smoking: what does smokes denote?

⋅ Answer: a function fromD to {0, 1}
⋅ Couldwewrite it more formally?

7/44



extensıon: an ınventory of denotatıons

LetD be the set of all individuals that exist in the real world. (D stands for
domain.)

(q: howwouldwe define the setD?)

⋅ Possible denotations:

⋅ Elements ofD, the set of actual individuals. names

⋅ Elements of {0, 1}, the set of truth-values. sentences
⋅ Functions fromD to {0, 1}. everything else

⋅ Back to smoking: what does smokes denote?

⋅ Answer: a function fromD to {0, 1}
⋅ Couldwewrite it more formally?

7/44



extensıon: an ınventory of denotatıons

LetD be the set of all individuals that exist in the real world. (D stands for
domain.)

(q: howwouldwe define the setD?)

⋅ Possible denotations:

⋅ Elements ofD, the set of actual individuals. names
⋅ Elements of {0, 1}, the set of truth-values.

sentences
⋅ Functions fromD to {0, 1}. everything else

⋅ Back to smoking: what does smokes denote?

⋅ Answer: a function fromD to {0, 1}
⋅ Couldwewrite it more formally?

7/44



extensıon: an ınventory of denotatıons

LetD be the set of all individuals that exist in the real world. (D stands for
domain.)

(q: howwouldwe define the setD?)

⋅ Possible denotations:

⋅ Elements ofD, the set of actual individuals. names
⋅ Elements of {0, 1}, the set of truth-values. sentences

⋅ Functions fromD to {0, 1}. everything else

⋅ Back to smoking: what does smokes denote?

⋅ Answer: a function fromD to {0, 1}
⋅ Couldwewrite it more formally?

7/44



extensıon: an ınventory of denotatıons

LetD be the set of all individuals that exist in the real world. (D stands for
domain.)

(q: howwouldwe define the setD?)

⋅ Possible denotations:

⋅ Elements ofD, the set of actual individuals. names
⋅ Elements of {0, 1}, the set of truth-values. sentences
⋅ Functions fromD to {0, 1}. everything else

⋅ Back to smoking: what does smokes denote?

⋅ Answer: a function fromD to {0, 1}
⋅ Couldwewrite it more formally?

7/44



extensıon: an ınventory of denotatıons

LetD be the set of all individuals that exist in the real world. (D stands for
domain.)

(q: howwouldwe define the setD?)

⋅ Possible denotations:

⋅ Elements ofD, the set of actual individuals. names
⋅ Elements of {0, 1}, the set of truth-values. sentences
⋅ Functions fromD to {0, 1}. everything else

⋅ Back to smoking: what does smokes denote?

⋅ Answer: a function fromD to {0, 1}
⋅ Couldwewrite it more formally?

7/44



extensıon: an ınventory of denotatıons

LetD be the set of all individuals that exist in the real world. (D stands for
domain.)

(q: howwouldwe define the setD?)

⋅ Possible denotations:

⋅ Elements ofD, the set of actual individuals. names
⋅ Elements of {0, 1}, the set of truth-values. sentences
⋅ Functions fromD to {0, 1}. everything else

⋅ Back to smoking: what does smokes denote?

⋅ Answer: a function fromD to {0, 1}

⋅ Couldwewrite it more formally?

7/44



extensıon: an ınventory of denotatıons

LetD be the set of all individuals that exist in the real world. (D stands for
domain.)

(q: howwouldwe define the setD?)

⋅ Possible denotations:

⋅ Elements ofD, the set of actual individuals. names
⋅ Elements of {0, 1}, the set of truth-values. sentences
⋅ Functions fromD to {0, 1}. everything else

⋅ Back to smoking: what does smokes denote?

⋅ Answer: a function fromD to {0, 1}
⋅ Couldwewrite it more formally?

7/44



towards a recıpe for meanıng

⋅ Our semantic theorywill need three components. We already introduced
one.

i. Inventory of denotations (3 of those.)

ii. Lexicon (For terminal nodes only; we automatically know the denotation type of

words.)

iii. Rules of composition, a.k.a., rules for ’non-terminal nodes’ (We’ll need some
syntax now.)
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towards a recıpe for meanıng: examples

Inventory of denotations

⋅ Elements ofD, the set of ac-
tual individuals.

⋅ Elementsof {0, 1}, the setof
truth-values.

⋅ Functions fromD to {0, 1}.

Lexicon

⋅ Proper names:

⋅ ⟦Ann⟧ =Ann
⋅ ⟦Bill⟧ =Bill

⋅ Intransitive verbs:

⋅ ⟦smokes⟧ = f ∶ D↦ {0, 1}
For all x ∈ D, f(x) = 1 iff x smokes

⋅ ⟦works⟧ = f ∶ D↦ {0, 1}
For all x ∈ D, f(x) = 1 iff xworks

9/44



extensıon & fırst applıcatıon

Some syntax



some syntax

⋅ For now,we’ll beworkingwith sentences that
contain a proper name as a subject and an
intransitive verb.

⋅ Such sentences associatewith a syntactic structure
on the right.

S

VP

V

smokes

NP

N

Ann
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some syntax

⋅ A sentence S comprises a subject, which is a Noun
PhraseNP, and a verb, which is actually a Verb
PhraseVP.

⋅ Every phrase has a head, soNP contains a noun
head,N, and theVP contains a verb head,V.

⋅ That’s the syntaxwe need for now.

S

VP

V

smokes

NP

N

Ann
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some syntax: structural relatıons

⋅ Let’s introduce three simple structural relations:
motherhood α is β’smother (=mother node) if α immediately

dominates β. List somemotherhood relations.
daughterhood β is α’s daugher (=daughter node) if α

immediately dominates β. List somemotherhood
relations.

sisterhood α is β’s sister (and vice versa) if both α and β are
immediately dominated by γ. List the one sisterhood
relation.

⋅ And twomore pairs of concept:
non/terminal node has (no) daughters.

non-branching node has (no) sisters.

S

VP

V

smokes

NP

N

Ann
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ınterpretıng trees

(3) a. ⟦Ann⟧ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
NP

N

Ann

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b. ⟦smokes⟧ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
VP

V

smokes

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4) ⟦Ann smokes⟧ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S

VP

V

smokes

NP

N

Ann

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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VP

V

smokes

NP

N

Ann

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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rules for ınterpretıng trees

⋅ For now, there are only two rules for interpreting trees, depending on
whether the sub/tree is non/branching:

Rule #1
In a non-branching node, the

denotation of the daughter is inherited
by themother.⟦α⟧

⟦β⟧
⟦γ⟧

⟦α⟧ = ⟦β⟧ = ⟦γ⟧

Rule #2
In a (binary) branching node, the
denotation of themother is the

functional application of its daughters.⟦α⟧
⟦γ⟧⟦β⟧

⟦α⟧ = ⟦β⟧(⟦γ⟧)
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applyıng the ınterpretatıon rules to trees

⋅ Let’s try calculating themeaning of ”Ann smokes” then.

⋅ Beforewe do, let’s recall Frege’s unsaturatedmeanings. Is there an
unsaturatedmeaning in ”Ann smokes”?

⋅ Yes. It’s the verb smokes. If unsaturatedmeanings are functions, then
smokes is a function, aswe already learnt.

⋅ What kind of a function?

⋅ Well, it takes individuals, likeAnn, and returns (=its values are) truth-values.

⋅ The extension of of an intransitive verb like ”smoke”, then, should be a
function from individuals to truth-values.
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applyıng the ınterpretatıon rules to trees
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S

VP

V

smokes

NP

N

Ann

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⟦S⟧
⟦VP⟧
⟦V⟧

⟦smokes⟧
⟦NP⟧
⟦N⟧

⟦Ann⟧
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applyıng the ınterpretatıon rules to trees

⋅ Lexicon: denotation of ⟦Ann⟧
⋅

⋅

⋅

⟦S⟧
⟦VP⟧
⟦V⟧

⟦smokes⟧
⟦NP⟧
⟦N⟧

⟦Ann⟧
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f ∶ D↦ {0, 1}
For all x ∈ D

f(x) = 1 iff x smokes
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applyıng the ınterpretatıon rules to trees

⋅ Lexicon: denotation of ⟦Ann⟧
⋅ Lexicon: denotation of ⟦smokes⟧
⋅ Composition rule: non-branching
nodes inherit the denotations from
their daughters. This happens
twice, for both theNP and theVP.

⋅
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⋅ Lexicon: denotation of ⟦smokes⟧
⋅ Composition rule: non-branching
nodes inherit the denotations from
their daughters. This happens
twice, for both theNP and theVP.

⋅ Composition rule: branching
nodes as FA at S-level.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
f ∶ D↦ {0, 1}
For all x ∈ D

f(x) = 1 iff x smokes
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (Ann) = 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
f ∶ D↦ {0, 1}
For all x ∈ D

f(x) = 1 iff x smokes
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extensıon & fırst applıcatıon

Back to truth-condıtıons



derıvıng truth-condıtıons ın an extensıonal semantıcs

⋅ Suppose Ann, Jan, andMaria are the only individuals in the actual world.

⋅ Ann and Jan are the only smokers.

⋅ The extension of the verb ”smoke” can, in this world, be displayed as follows:

⟦smokes⟧ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Ann↦ 1
Jan↦ 1
Maria↦ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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extensıon & fırst applıcatıon

characterıstıc functıons



sets and theır characterıstıc functıons

⋅ Wehave construed themeaning of intransitive verbs as functions from a set
of individuals to a set of truth values.

⋅ Alternatively, themeaning of intransitive verbs can be construed simply as a
set.

⋅ Intuition: an intransitive verb denotes the set of individuals that it is
true of.

Characteristic function

a. Let A be a set. Then charf, the characteristic function of A, is that function
f:

f(x) = { 1 for any x ∈ A
0 for any x ∉ A

b. Let f be a functionwith range {0, 1}. Then charf, the set characterised by f,
is {x ∈ D ∶ f(x) = 1}
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b. Let f be a functionwith range {0, 1}. Then charf, the set characterised by f,
is {x ∈ D ∶ f(x) = 1} 19/44



sets and theır characterıstıc functıons: an example

Context
Let our universe contain only three individuals: {Ann, Jan,Maria}. Suppose
that Ann and Jan are the only oneswho sleep, and Ann is the only onewho
snores.

Example: set treatment
If intransitive verbs denote sets, then sleep and snore denote the following:

(5) a. ⟦sleep⟧ = {Ann,Jan}
b. ⟦snore⟧ = {Ann}

(6) a. Ann ∈ ⟦sleep⟧
b. ⟦snore⟧ ⊆ ⟦sleep⟧
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sets and theır characterıstıc functıons: an example

Example: charf treatment

Same context. If intransitive verbs denote characteristic functions (charf),
then the following are denotations of sleep and snore.

(7) a. ⟦sleep⟧ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Ann↦ 1
Jan↦ 1
Maria↦ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
b. ⟦snore⟧ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Ann↦ 1
Jan↦ 0
Maria↦ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8) Are the following now true?

a. Ann ∈ ⟦sleep⟧ (NO)

b. ⟦snore⟧ ⊆ ⟦sleep⟧ (NO)
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sets and theır characterıstıc functıons: ınterım summary

⋅ Wewill adopt the charf notation and conception (right column) and drop
basic set notation.

Old system New system⟦Vıntr =⟧ Set charf

⟦Ann sleeps⟧ = Ann ∈ ⟦sleep⟧ ⟦sleep⟧(Ann) = 1
Set rel. ⟦snore⟧ ⊆ ⟦sleep⟧ {x ∶ ⟦snore⟧(x) = 1} ⊆{x ∶ ⟦sleep⟧(x) = 1}
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addıng transıtıve verbs



what about transıtıve verbs?

(9) Ann smokes.

(10) Ann likes Jan.
(11) S

VP

NP

N

Jan

V

likes

NP

N

Ann

⋅ Howdowe define themeaning of likes, givenwhatwe know about the
meaning of an intransitive verb like smokes?
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what about transıtıve verbs?

(12) ⟦smokes⟧ = f ∶ D↦ {0, 1}
For all x ∈ D, f(x) = 1 iff x smokes

(13) ⟦likes⟧ = g ∶ D↦ f

(14) ⟦likes⟧ = g ∶ D↦ D↦ {0, 1}
(15) ⟦likes⟧ = f ∶ D↦ {g ∶ g is a function fromD↦ {0, 1}}

For all x, y ∈ D, f(x)(y) = 1 iff x likes y
⋅ This logic is in linewith the syntax: V first combineswith the direct object to
form a VP (hence it needs ameanings).

⋅ Recall branching-nodemeaning and the inventory ofmeanings …(What’s
different here?)
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revısıtıng denotatıon ınventory and a mıld ıntro to types

Domain of individuals
e is the type of individuals (entities), whereDe ∶= D.

Domain of truth-values
t is the type of truth values, whereDt ∶= {0, 1}.
⋅ e and t are basic types and correspond to Frege’s saturatedmeanings.

⋅ What, then, are unsaturatedmeanings?
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revısıtıng denotatıon ınventory and a mıld ıntro to types

⋅ They are of derived types for various functions.

Domains of derived types

a. D⟨e,t⟩ ∶= {f ∶ f is a function fromDe ↦ Dt}
b. D⟨e,⟨e,t⟩⟩ ∶= {f ∶ f is a function fromDe ↦ D⟨e,t⟩}
c. …
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types & domaıns: an ınterım summary

Semantic types

a. e and t are semantic types.

b. If σ and τ are semantic types, then ⟨σ, τ⟩ is a semantic type.

(Why not just say ’if e

and t are semantic types, …’?)

c. Nothing else is a semantic type.

Semantic denotation domains

a. De ∶= D (the set of individuals)

b. Dt ∶= {0, 1} (the set of truth-values)

c. For any semantic types σ and τ, D⟨σ,τ⟩ is the set of all functions from Dσ to
Dτ.
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types & domaıns: an ınterım summary

⋅ So far, we’ve come across four denotation types:

⋅ type e

(example: names)

⋅ type ⟨e, t⟩ (example: intransitive Vs)

⋅ type ⟨e, ⟨e, t⟩⟩ (example: transitive Vs)

⋅ type t (example: sentences)
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the road ahead

⋅ We’ve covered a conceptually vast, yet relatively simple, metalinguistic
systemwith(in) whichwe can analysemeanings.

⋅ Wenowhave twomore technical matters to address:

⋅ Onewill decompose 2-place functions (=transitive Vs) andmake sense
of them in terms of the systemwe’ve been developing.

⋅ Anotherwill simplify the technical issueswith thewaywe’ve been
writing down functions. It will make life easier. And itmakesmuch
sense.

29/44



schönfınkelısatıon



schönfınkelısatıon

⋅ Weneed a bitmoremaths to synthesise the last portion of slides and
understand trans-Vs as 2-place functions.

⋅ Recall our three general assumptions:

Binary branching In the syntax, trans-Vs combinewith the direct object to
form a VP, and VPs combinewith the subject to form a sentence.

Locality Semantic interpretation rules are local: the denotation of any
non-terminal node is computed from the denotation of its daughter
nodes.

Frege’s conjecture Semantic composition is functional application.
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Example
Let our domainD contain just the three goats Sebastian, Dimitri, and Leopold.
Sebastian is the biggest and Leopold the smallest. The relation ”is-bigger-than”
is then the following set of ordered pairs:

(16) Rbıgger =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⟨Sebastian, Dimitri⟩ ,⟨Sebastian, Leopold⟩ ,⟨Dimitri, Leopold⟩

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
⋅ There is a correspondence between sets and their characteristic functions.

⋅ What is the functional version of Rbıgger? (3mins)
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⋅ The resulting function fbıgger is a 2-place function.
⋅ Moses Schönfinkel, a logician, showed that n-place functions are reducible
to 1-place function.

⋅ This reduction is Schönfinkelisation.
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fbıgger =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⟨l,s⟩ ↦ 0⟨l,d⟩ ↦ 0⟨l,l⟩ ↦ 0⟨s,l⟩ ↦ 1⟨s,d⟩ ↦ 1⟨s,s⟩ ↦ 0⟨d,l⟩ ↦ 1⟨d,s⟩ ↦ 0⟨d,d⟩ ↦ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⟶ f′bıgger =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l↦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
l↦ 0
s↦ 0
d↦ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
s↦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
l↦ 1
s↦ 0
d↦ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
d↦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
l↦ 1
s↦ 0
d↦ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋅ f′bıgger is a function that applies to the first arg. and yields a function that
applies to the second arg.

⋅ When applied to Leopold, it yields a function thatmaps any goat to 1 if it is
smaller than Leopold.
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the λ-calculus



the λ-calculus (a.k.a. λ-abstractıon)

⋅ Wenow turn to the second technical matter.

⋅ We add some very special operators, lambdas (λ), to our system in order to
simplify it.

⋅ The λ operator applies to a function in order to describe it.
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the λ-calculus (a.k.a. λ-abstractıon)

⋅ Beforewemove onto this, let’s recall our charf-notation for intransitive
verbs.

(17) ⟦Ann snores⟧ = ⟦snores⟧(Ann) = 1 (iff Ann actually snores)
⋅ What about transitive verbs?

(18) ⟦Ann loves Jan⟧ = (two notations)

a. ⟦loves⟧(Ann)(Jan) = 1 (iff Ann actually loves Jan)
b. ⟦loves⟧(Ann, Jan) = 1 (iff Ann actually loves Jan)
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the λ-calculus (a.k.a. λ-abstractıon)

⋅ Imaginewewere interpreting an expression containing just the twowords:
nounMaggie and verb love(s)

⋅ Wefirst need to construct a tree. In our case, there are two possible
trees since something ismissing.

(19)

?loves

Maggie

(20)

Maggieloves

?

λx .loves(Mary, x )
denotes the characteristic
function of the set of individuals
thatMaggie loves.

λx .loves( x ,Maggie)
denotes the characteristic
function of the set of individuals
that loveMaggie.
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⋅ Very loosely, a λ-formula specifies the conditions that need to bemet under
which the function is true.

⋅ A verb like smokemakes sense (it is or can be true) only if there a single
argument which can saturate its meaning.

(21) ⟦smokes⟧ = . . .

(22) λx.⟦smokes⟧(x) = . . .

⋅ The last notation can be read ’if therewas an x, ⟦smoke⟧ could be true.’
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⋅ If φ is an expression denoting a function, and x is an expression that is of the
right type to be used as an argument to φ, then φ(x) denotes the result of
applying φ to x (saturation).

For example

Expression bored(x) denotes the result of applying the function denoted by
bored to the value of x.
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Another example

(23) [λx.loves(Maggie)(x)](Bill)
⋅ 23 denotes the result of applying the function is loved byMaggie to Bill.

⋅ This is then equivalent to (24)

(24) loves(Maggie)(Bill)
⋅ where Bill replaced the placeholder x.
⋅ This ’conversion’ process is known as β-conversion or β-reduction.
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λ-abstractıon wıth numbers: a sketch

⋅ We all remember formulae like (25) from high school.

(25) f(x) = x + 7
a. Now let x = 5.
b. Thenwe have:

f(x) = x + 7⟿ f(5) = 5 + 7
⋅ (25) is the same as (27)

(26) a. f(x) = x + 7⟿ λx.x + 7
b. [λx.x + 7]

(5) ⟿ 5 + 7
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λ-abstractıon wıth numbers: a sketch

(27) a. f(x) = x + 7⟿ λx.x + 7
b. [λx.x + 7]

(5) ⟿ 5 + 7

⋅ That’s all λ-abstraction is:
⋅ abstractionwith a λ-clause specifies the conditions underwhich the
value description (27a)

⋅ β-reduction (β-conversion), reduces or converts the variable x into
whatever valuewe feed it – in our case, number 5.

42/44



λ-abstractıon wıth numbers: a sketch

(27) a. f(x) = x + 7⟿ λx.x + 7
b. [λx.x + 7](5)

⟿ 5 + 7

⋅ That’s all λ-abstraction is:
⋅ abstractionwith a λ-clause specifies the conditions underwhich the
value description (27a)

⋅ β-reduction (β-conversion), reduces or converts the variable x into
whatever valuewe feed it – in our case, number 5.

42/44



λ-abstractıon wıth numbers: a sketch

(27) a. f(x) = x + 7⟿ λx.x + 7
b. [λx.x + 7](5) ⟿ 5 + 7

⋅ That’s all λ-abstraction is:
⋅ abstractionwith a λ-clause specifies the conditions underwhich the
value description (27a)

⋅ β-reduction (β-conversion), reduces or converts the variable x into
whatever valuewe feed it – in our case, number 5.

42/44



questıons?
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exercıses
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exercıse: convert sets ınto λ-functıons

(28) 29 ∈ {x ∈ N ∶ x ≠ 0} iff 29 ≠ 0

(29) Massachusetts ∈ {x ∈ D ∶ California is awestern state} = D iff California
is aWestern state.

(30) {x ∈ D ∶ California is awestern state} = D if California is awestern state.
(31) {x ∈ D ∶ California is awestern state} = ∅ if California is not awestern

state.

(32) {x ∈ N ∶ x ≠ 0} = {y ∈ N ∶ y ≠ 0}
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exercıse: sımply the λ-expressıons

(33) [λx ∈ D[λy ∈ D[λz ∈ D.z introduced x to y]]](Ann)(Sue)
(34) [λx ∈ N[λy ∈ N.y > 3 and y < 7](x)]]]
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