A HISTORICAL TYPOLOGY OF CONJUNCTION MEANINGS

Moreno Mitrović
SEMANTICS OF CONJUNCTION \& Vienna, December 19, 2016
University of Saarland G Bled Institute

INTRODUCTION

INTRODUCTION

WHAT THIS TALK IS ABOUT ...

WHAT THIS TALK IS ABOUT, IN A NUTSHELL

- This talk is about a range of meanings that conjunction markers express and the way this range changes through time.
- Empirically, we look at the range+changes in Indo-European and Japonic

INTRODUCTION

A TYPOLOGICAL SPACE FOR CONJUNCTION

THE CONJUNCTION PARAMETER

THE CONJUNCTION PARAMETER

Diachronically

- YES \mapsto NO (in IE)
- (NO) \mapsto YES (in JP)

THE CONJUNCTION PARAMETER

WHAT THIS TALK IS ABOUT, IN A NUTSHELL

- This conjunction particle is cross-linguistically dubbed μ (terminologically, quantifier particle (Szabolcsi) or Superparticle)
- A sketch of these particles ...

SUPERPARTICLES

SUPERPARTICLES

TWO LOGICAL ATOMS

SUPERPARTICLES: TWO LOGICAL CLASSES IN JAPANESE

The μ-series (mo)
The k-series (ka)

SUPERPARTICLES：TWO LOGICAL CLASSES IN JAPANESE

The μ－series（mo）
a．ビル（も）メアリーも Bill（mo）Mary mo
B $(\mu) \mathrm{M} \quad \mu$
＇（both）Bill and Mary．＇

The k－series（ka）
a．ビル（か）メアリーか Bill ka Mary ka B K M K
＇（either）Bill or Mary．＇

SUPERPARTICLES：TWO LOGICAL CLASSES IN JAPANESE

The μ－series（mo）
a．ビル（も）メアリーも Bill（mo）Mary mo
B $(\mu) \mathrm{M} \quad \mu$
＇（both）Bill and Mary．
b．メアリーも
Mary mo
M $\quad \mu$
＇also Mary＇

The k－series（ka）
a．ビル（か）メアリーか Bill ka Mary ka B K M K
＇（either）Bill or Mary．＇
b．分かる か
wakaru ka
understand k
＇Do you understand？＇

SUPERPARTICLES：TWO LOGICAL CLASSES IN JAPANESE

The μ－series（mo）
a．ビル（も）メアリーも Bill（mo）Mary mo B $(\mu) \mathrm{M} \quad \mu$ ＇（both）Bill and Mary．＇
b．メアリーも
Mary mo
M $\quad \mu$
＇also Mary＇
C．誰 も
dare－mo
who μ
＇every－／any－one＇

The k－series（ka）
a．ビル（か）メアリーか Bill ka Mary ka B K M K
＇（either）Bill or Mary．＇
b．分かる か
wakaru ka
understand k
＇Do you understand？＇
C．誰 加
dare ka
who K
＇someone＇

SUPERPARTICLES：TWO LOGICAL CLASSES IN JAPANESE

The μ－series（mo）
a．ビル（も）メアリーも Bill（mo）Mary mo
B $(\mu) \mathrm{M} \quad \mu$
＇（both）Bill and Mary．＇
b．メアリーも
Mary mo
M $\quad \mu$
＇also Mary＇
C．誰 も
dare－mo
who μ
＇every－／any－one＇

The k－series（ka）
a．ビル（か）メアリーか Bill ka Mary ka B K M K
＇（either）Bill or Mary．＇
b．分かる か
wakaru ka
understand k
＇Do you understand？＇
C．誰 加
dare ka
who k
＇someone＇

SUPERPARTICLES

BEYOND JAPANESE

BEYOND JAPANESE

- Gil (2005) observes (in his WALS entry) that 67\% of languages show formal similarity of conjunction- and quantification-marking.

BEYOND JAPANESE: NOT AN ACCIDENT

- The μ particle is multifunctional, not homophonous (accidental/in disguise). The most articulate proponents of such a view include Hagstrom (1998), Cable (2010) and Bianchi (2015).

BEYOND JAPANESE: NOT AN ACCIDENT

Mitrović and Sauerland (2014, 2016); Mitrović (2014); Slade (2011) against homophony:

- Why would languages consistently manifest homophony of coordinate, and quantificational $_{2} \mu$-markers?

$$
\left(\because \mu_{7}=\mu_{2}\right)
$$

BEYOND JAPANESE: NOT AN ACCIDENT

Mitrović and Sauerland (2014, 2016); Mitrović (2014); Slade (2011) against homophony:

- Why would languages consistently manifest homophony of coordinate, and quantificational ${ }_{2} \mu$-markers?
$\left(\because \mu_{1}=\mu_{2}\right)$
- Why can't a quantificational ${ }_{1}$ and a conjunctional ${ }_{2} \mu$ cooccur? $\left(\because \mu_{1}=\mu_{2}\right)$
(3) a. dono gakusei mo dono sensei mohanashita INDET student μ INDET teacher μ talked
'Every student and every teacher talked.'
b. *dono gakusei mo mo dono sensei mo mo INDET Student EVERY AND INDET teacher EVERY AND hanashita
talked
'Every student and every teacher talked.'

INDO-EUROPEAN

INDO-EUROPEAN

TWO CONJUNCTION SYSTEMS

TWO WAYS TO CONJOIN IN OLD IE

- Earliest IE languages show that there existed two types of coordinate structure:
- one in which the coordinator occupies the initial (first),
- and another in which the coordinator occupies the peninitial (second) position with respect to the second conjunct.
- diachronically, only the initial structure (a) survives (lost across all branches)
$\cdot\{\mathrm{a}, \mathrm{b}\} \xrightarrow{\mathrm{t}} \mathrm{b}$

(4) CLASSICALLATIN (ITALIC)
a. ad summam rem pūblicam atque ad omnium to utmost weal common and to all nostrum [...]
of us
'to highest welfare and all our [lives]' (Cic., Or.,
1.VI.27-8)
b. vīam samūtem que
life safety and
'the life and safety'
(Cic., Or., ו.VI.28-9)

TWO CONJUNCTION SYSTEMS: SOME DATA II

(5) VEDIC SANSKRIT (INDO-IRANIAN)
a. párși tásyā utá dvișáh: save.IMP.2.sG this and enmity
'Save us from this and enmity.' (Rigveda, 2.007.2 ${ }^{\text {º }}$)
b. vāyav-ïndraś-ca cetathah: sutānām Vayu-Indra-and rush.2.DL rich vājinïvasū strength-bestowing
'Vayu and Indra, rich in spoil, rush (hither).' (Rigveda, 1.002.5 ${ }^{a}$)

TWO CONJUNCTION SYSTEMS: SOME DATA III

(6) GOTHIC (GERMANIC)
a. ak ana lukarnastapin jah liuteip neither on candle.DAT.SG and light.IND.3.SG allaim paim in pamma
all. DAT.PL it. DAT.PL in that.M.DAT.SG garda.
house.m.dAT.SG
'Neither do men light a candle, and put it under a bushel.'
(Codex Argenteus, Mt. 5:15)
b. (galaip in praitauria aftra came. PRET.3.SG in judgement hall.ACC.SH again Peilatusjah) wopida Iesu qap
P.NOM and called.PRET.3.SG J.ACC said.PRET.3.SG uh imma.
and him.M.DAT.SG
` ([Then] Pilate entered into the judgment hall again, and) called Jesus, and said unto him.'
(Codex Argenteus, Jn. 18:33)

WHY MORPHOLOGY MATTERS

- Conjunction marker (b) means more than 【and】.
- Morphology sheds light in underlying structure.

WHY MORPHOLOGY MATTERS

- Conjunction marker (b) means more than 【and】.
- Morphology sheds light in underlying structure.
- Historically, first-position conjunction marker (a) are compound
- Latin atque =at + que
- Sanskrit uta = u + ta
- Gothic jah = j + uh

NON-CONJUNCTIVE CONJUNCTION MARKER I

(7) VEDIC G CLASSICAL SANSKRIT (INDO-IRANIAN)
a. 〈prát〉īdám vīsvam modate yát [kim-ca] this world exults which [what- μ] prthivyāmádhi
world.F.Acc-upon
`This whole world exults whatever is upon the earth.'
(Rigveda, 5.83.9 ${ }^{c}$)

NON-CONJUNCTIVE CONJUNCTION MARKER II

b. na yasya [kaś-ca] tititarti

NEG whom.gen [who.M.SG- μ] able to overcome māyā?
illusions.pl
'No one [=not anyone] can overcome that (=the Supreme Personality of Godhead's) illusory energy.' (Bhägavatapurāṇa, 8.5.30)

NON-CONJUNCTIVE CONJUNCTION MARKER III

(8) LATIN (ITALIC)
a. auent audire quid quis-que senserit want hear what what- μ think
`they wish to hear what each man’s (everyone's) opinion was'
(Cic. Phil. 14,19)

NON-CONJUNCTIVE CONJUNCTION MARKER IV

(9) GOTHIC (GERMANIC)
a. [pishvad uh] (...) gaggis.
[where μ] go.2.SG.PRES.ACT.IND
'wherever you go' (Codex Argenteus, Mt. 8:19)
b. jah [hvaz- uh] saei hauseip and who.M.sG and pro.M.sG hear.3.SG.IND waurda meina words.ACC. PL mine
'And every one that heareth these sayings of mine ...'
(Codex Argenteus, Mt. 7:26)

NON-CONJUNCTIVE CONJUNCTION MARKER V

c. na yasya [kaś-ca] tititarti

NeG whom.gen [who.M.SG- μ] able to overcome māyā?
illusions.pL
'No one [=not anyone] can overcome that (=the Supreme Personality of Godhead's) illusory energy.' (Bhägavatapurāṇa, 8.5.30)

TWO TYPES OF NON-CONJUNCTIVE MEANINGS

- the second non-connective QUANTIFICATIONAL function is non-singular -- when attached to a wh-base, μ may generate one of the two possible quantificational expressions:

A universal (\forall) distributive terms
B negative polarity indefinite (\exists) terms

TWO TYPES OF NON-CONJUNCTIVE MEANINGS

(10) jah [hvaz- uh] saei hauseip and who.M.sG and pro.M.sG hear.3.SG.IND
waurda meina
words.ACC. PL mine
'And every one that heareth these sayings of mine ...'
(Codex Argenteus, Mt. 7:26)

	μ MARKER	CONJ.	ADDITIVE	DISTR.	NPI	FCI
Slav.	i	+	+	-	+	-
IIr.	- ca	+	+	-	+	+
Gmc.	- -uh	+	+	+	-	+
Ital.	- que	+	+	+	-	+
Anat.	$-(y) a$	+	+	+	-	+
Toch.	- -ra	+	+	+	-	+
Cel.	- ch	+	$(+)$	+	-	+
Gk.	- -т	+	$(+)$	-	-	$(+)$

The allosemy of the IE conjunction markers like 【kwe】=
conjunction marker

INDO-EUROPEAN

THE UNDERLYING STRUCTURE

- Bimorphemic fact is borne out: J + μ

INDO-EUROPEAN

THE CHANGE AND THE LOSS OF MULTIFUNCTIONAL SEMANTICS

THE LOSS OF 2P: GREEK

Figure 1: Relative frequency of $k \alpha ı$ and $\tau \varepsilon$. (Goldstein, 2016, 65, fig. 4)

JAPONIC

- In the earliest OJ corpus (Man'yōshū MYS, 8th c.), the [wh+ μ] quantificational expressions were confined to inherently scalar (σ) complements, as first noticed by Whitman (2010) .
- Old Japanese: not only is the polar construction absent from the μ-system, but μ^{0} subcategorised for scalar hosts only.
- μ was not only distributive but also inherently scalar.

OLD JAPANESE μ II

（12）以都母 々々々 於母加 古比 須々 itu－mo itu－mo omo－ga kwopi susu when－μ when－μ mother－GEN yearning by
＇I always，always think of my mother［i．e．at all times］＇ （MYS，20．4386；trans．by Vovin 2013，146）
$\begin{array}{llll}\text {（13）} & \text { 佐袮斯 } & \text {［欲能 } & \text { 伊久陀 }\end{array}$ 母］$]$
PRE－Sleep－PAST［night－sUB how many μ ］
阿羅袮婆
ara－neba
exist－NEG－COND
｀As there have been few nights in which we slept
together ．．．＇（MYS 5．804a，II．46－－47）

OLD JAPANESE μ III

\# of attestations

SCALAR $[w h+\mu]$total 24
itu mo 'when μ ' 12
iku mo `how much/many μ ' 11
NON-SCALAR $[w h+\mu]$ total 0
ado/na/nado mo 'what/why μ ' 0
ika mo 'how μ^{\prime} 0
ta mo 'who μ ' 0

CLASSICAL JAPANESE：RISE OF POLARITY I

－Change \＃1：Ioss of obligatorily scalar complementation
（14）たれも見おぼさん事 tare mo mi－obos－an koto who μ see．INF－think．HoN－TENT／ATTR matter
＇the fact that everybody wanted to see＇（HM II：226／2； Vovin 2003，128）

CLASSICAL JAPANESE：RISE OF POLARITY II

－Change \＃2：rise of polarity－sensitivity
（15）いま は なにの 心 も なし
ima fa nani－no kokoro mo na－si
now TOP what－GEN idea μ NEG－FIN
＇I do not have any thoughts［but of meeting you］now＇
（IM XCVI：168．9；Vovin 2003，424）

THE TOOLS FOR AN ANALYSIS

THE TOOLS FOR AN ANALYSIS

EXHAUSTIFICATION

EXAMPLE OF A SYSTEM FROM ENGLISH DISJUNCTION

- In English, 'or' is always ambiguous between two implicated meanings.
a. Either it carries an IGNORANCE implicature,
b. or it carries a SCALAR implicature.

EXAMPLE OF A SYSTEM FROM ENGLISH DISJUNCTION

- In English, 'or' is always ambiguous between two implicated meanings.
a. Either it carries an IGNORANCE implicature,
b. or it carries a SCALAR implicature.
(16) 【Mary saw John or Bill. $\rrbracket=j \vee b$

EXAMPLE OF A SYSTEM FROM ENGLISH DISJUNCTION

- In English, 'or' is always ambiguous between two implicated meanings.
a. Either it carries an IGNoRANCE implicature,
b. or it carries a SCALAR implicature.
(16) 【Mary saw John or Bill. $\rrbracket=j \vee b$
a. (16) $\leadsto \diamond \Delta[j \wedge \diamond[b] \wedge \diamond[j \vee b] \wedge \diamond[j \wedge b]$
"The speaker doesn't know whether Mary saw John
and the speaker doesn't know whether Mary saw Bill and the speaker doesn't know whether Mary saw John and Bill."

EXAMPLE OF A SYSTEM FROM ENGLISH DISJUNCTION

- In English, 'or' is always ambiguous between two implicated meanings.
a. Either it carries an IGNORANCE implicature,
b. or it carries a SCALAR implicature.
(16) 【Mary saw John or Bill. 】 $=j \vee b$
a. (16) $\leadsto \diamond \diamond[j] \wedge[b] \wedge \diamond[j \vee b] \wedge \diamond[j \wedge b]$
"The speaker doesn't know whether Mary saw John
and the speaker doesn't know whether Mary saw Bill
and the speaker doesn't know whether Mary saw John
and Bill."
b. $(16) \leadsto[j \vee b] \wedge \neg[j \wedge b]$
"Mary saw John or Bill, but not both."

FORMALISING ALTERNATIVES G THEIR PRUNING

$$
j \vee b
$$

FORMALISING ALTERNATIVES G THEIR PRUNING

$$
j \vee b
$$

FORMALISING ALTERNATIVES G THEIR PRUNING

$$
j \vee b
$$

FORMALISING ALTERNATIVES G THEIR PRUNING

$$
\begin{gathered}
j \vee b \\
j \wedge b
\end{gathered}
$$

FORMALISING ALTERNATIVES G THEIR PRUNING

$$
\begin{gathered}
j \vee b \\
j \wedge b
\end{gathered}
$$

\longleftarrow assertion
$\longleftarrow \sigma$-alts

FORMALISING ALTERNATIVES G THEIR PRUNING

$$
\begin{gathered}
j \vee b \\
j \wedge b
\end{gathered}
$$

$$
\longleftarrow \text { assertion }
$$

$$
\longleftarrow \sigma \text {-alts }
$$

FORMALISING ALTERNATIVES G THEIR PRUNING

$$
\begin{gathered}
j \vee b \\
j \wedge b
\end{gathered}
$$

$$
\longleftarrow \text { assertion }
$$

$$
\longleftarrow \sigma \text {-alts }
$$

FORMALISING ALTERNATIVES G THEIR PRUNING

$$
\begin{gathered}
j \vee b \\
j \wedge b
\end{gathered}
$$

$$
\longleftarrow \text { assertion }
$$

$$
b
$$

$$
\longleftarrow \sigma \text {-alts }
$$

FORMALISING ALTERNATIVES G THEIR PRUNING

$$
\begin{array}{c:c}
j \vee b & \longleftarrow \text { assertion } \\
\hdashline \bigotimes^{j \wedge b} & \longleftarrow
\end{array}
$$

FORMALISING ALTERNATIVES G THEIR PRUNING

\therefore There two kinds of alternatives: subdomain (δ) and scalar (σ) ones.

- The choice between which ones are relevant is made in syntax using a covert exhaustification operator akin to a silent 'only' - \mathfrak{X}.

FORMALISING ALTERNATIVES G THEIR PRUNING

\therefore There two kinds of alternatives: subdomain (δ) and scalar (σ) ones.

FORMALISING ALTERNATIVES G THEIR PRUNING

\therefore There two kinds of alternatives: subdomain (δ) and scalar (σ) ones.

- The choice between which ones are relevant is made in syntax using a covert exhaustification operator akin to a silent 'only' - \mathfrak{X}.

THE SILENT EXHAUSTIFIER

- The operator \mathfrak{X} is a silent variant of the adverb 'only'.
-What does it mean?
(17) $\mathfrak{X}(p)=p \wedge \forall q \in \mathfrak{A}(p)[[p H q] \rightarrow \neg q]$
- This LF is read as: the assertion, p, is true and any non-entailed alternative to the assertion, q an alternative, is false.

DERIVING CHANGE IN JAPANESE

- The Classical (early middle) Japanese μ-system: $\mu \varnothing$ (or allowing both [σ]- or [δ]-carrying complements).
- non-scalar hosts with [δ] specification \longrightarrow polarity system kicks in automatically as per Chierchia's (2013) system
- Change in inferential procedure due to featural change (grammaticalisation):
(18) a. $\mathbb{[} \neg \neg \mathrm{P}]_{1} \rrbracket \leadsto \mathrm{SI}^{1}: \mathfrak{X}_{[0]}\left[\neg\left[\begin{array}{lll}\ldots[\mu \mathrm{P} & \exists_{[+0]} & \mu]\end{array}\right]\right]$
$\neg>\forall \vdash \neg \forall$
b. $\llbracket[\neg \mu \mathrm{P}]_{2} \rrbracket \leadsto N P$ P: $\left.\mathfrak{X}_{[\delta]}\left[\neg\left[\begin{array}{lll}\cdots & \exists_{[\mu \mathrm{P}} & \exists_{[+\delta]} \\ \mu\end{array}\right]\right]\right]$
$\forall>\neg \vdash \neg ヨ$

THE TOOLS FOR AN ANALYSIS

OUR μ

OUR μ I

- CLAIM: μ invokes exhaustification
- essentially comes with two semantic functions:
i. alternative (\mathfrak{A}) activations
ii. obligatory exhaustification via a silent (Chierchian) exh. operator (\mathfrak{X})

OUR μ II

(19) An informal entry for $\llbracket \mu^{0} \rrbracket$

$$
\llbracket \overbrace{\mu^{0} \|}^{\sim} \quad \begin{aligned}
\frac{\mu P}{} & =\llbracket \mu \rrbracket^{M, g, w}(\llbracket X P \rrbracket) \\
& =\{\llbracket X P \rrbracket\}^{\mathfrak{A}} \\
& \rightarrow \mathfrak{X}(\llbracket X P \rrbracket)\left(\{\llbracket X P \rrbracket\}^{\mathfrak{A}}\right)
\end{aligned}
$$

OUR μ III

(20) $\mathfrak{X}_{[\delta z]}(p)=\left\{\begin{aligned} \text { polarity reading } & \text { if under } \neg \\ \text { FC reading } & \text { if under } \diamond \\ \text { additive reading } & \text { if } \mathfrak{X} \text { is iterative }\left(\mathfrak{X}^{2}\right) \\ \perp & \text { otherwise }\end{aligned}\right.$

- How do we derive additivity? Recursive exhaustification. (Fox, 2007)

DERIVING NEGATIVE POLARITY

(21) HITTITE (ANATOLIAN)
a. nu-wa ÚL [kuit ki] sakti
and-QUOT NEG [who μ] know.2.SG.PRES
'You know nothing (=not anything)'
XXIV.8.I.36)
(22) $\left[\mathfrak{X}_{[\delta]}[\right.$ You don't know $[$ what $\left.-\mu]]\right]$
a. ASSERTION: $(=p)$
$\forall x \in \mathfrak{D}[\operatorname{THING}(x) \wedge \neg K N O W(Y O U, x)]$
b. $\mathfrak{A}(p)=\left\{\forall x \in \mathfrak{D}^{\prime}[\operatorname{THING}(x) \wedge \neg K N O W(Y O U, x)] \mid\right.$ $\left.\mathfrak{D}^{\prime} \subset \mathfrak{D}\right\}$
c. $\mathfrak{X}_{[\delta]}(p)=p \quad(\because$ all alts. entailed under neg.)

DERIVING UNIVERSAL QUANTIFICATION

(23) 【who】 $=\llbracket$ someone $\rrbracket=\exists x \ldots=a \vee b \vee \ldots$
(24) a. ACTIVE δ-ALTERNATIVES:.............................. . . $=$ (b)

b. EXHAUSTIFICATION:

$$
\mathfrak{X}_{[\delta]}^{R}(a \vee b)=a \wedge b \quad(\vdash \forall)
$$

- Similar implementation by Bowler (2014) for Warlpiri.

THANK YOU!

AND SPECIAL THANKS TO VIOLA ET AL. FOR ORGANISING THIS EVENT!

REFERENCES I

REFERENCES

Bianchi, V. (2015). Some thoughts on the derivation of polar questions. Paper presented at Questions and Disjunctions: Syntax, Semantics, Typology. University of Vienna, October 1st.

Bowler, M. (2014). Conjunction and disjunction in a language without `and'. In Snider, T., D'Antonio, S., and Weigand, M., editors, Proceedings of SALT 24, pages 137-155.
Cable, S. (2010). The Grammar of Q: Q-Particles, Wh-Movement and Pied-Piping. Oxford: Oxford University Press.

REFERENCES II

Chierchia, G. (2013). Logic in Grammar: Polarity, Free Choice and Intervention. Oxford studies in semantics and pragmatics 2. Oxford: Oxford University Press.
Fox, D. (2007). Free choice and scalar implicatures. In Sauerland, U. and Stateva, P., editors, Presupposition and Implicature in Compositional Semantics, pages 71-120. London: Palgrave Macmilan.
Gil, D. (2005). Conjunctions and universal quantifiers. In Haspelmath, M., Dryer, M. S., Gil, D., and Comrie, B., editors, The World Atlas of Language Structures, volume 1 , chapter 56, pages 230-233. Oxford: Oxford University Press.

REFERENCES III

Goldstein, D. (2016). Variation versus change: Clausal clitics between Homer and Herodotus. Indo-European Linguistics, 4:53-97.
Hagstrom, P. (1998). Decomposing questions. PhD thesis, MIT.
Kayne, R. (1994). The Antisymmetry of Syntax. Cambridge, MA: MIT Press.
Mitrović, M. (2O14). Morphosyntactic atoms of propositional logic: a philo-logical programme. PhD thesis, University of Cambridge.
Mitrović, M. and Sauerland, U. (2014). Decomposing coordination. In Iyer, J. and Kusmer, L., editors, Proceedings of NELS 44, volume 2, pages 39--52.

REFERENCES IV

Mitrović, M. and Sauerland, U. (2016). Two conjunctions are better than one. Acta Linguistica Hungarica, 63(4):471--494.

Slade, B. M. (2O11). Formal and philological inquiries into the nature of interrogatives, indefinites, disjunction, and focus in Sinhala and other languages. PhD thesis, University of Illinois at Urbana-Champaign.
Vovin, A. (2003). A Reference Grammar of Classical Japanese Prose. London: Routledge.
Vovin, A. (2O13). Man'yōshū, Book 20, a new English translation containing the original text, kana transliteration, romanization, glossing and commentary. Leiden: E.J. Brill.

REFERENCES V

Whitman，J．（2010）．否定構造と歴史的変化－－－主要部と否定極性表現を中心に［hitei kōzō to rekishi teki henka－－－shuyōbu to hitei kyokusei hyōgen o chūsin ni］．In Katō，Y．，editor，否定 と言語理諭［Hitei to gengo riron］，pages 141－－169．Tokyo： Kaitakusha．Ms．

