# **DECOMPOSING DISJUNCTION**

THE MORPHOSEMANTIC MAKEUP OF XOR

Moreno Mitrović October 12, 2016

University of Saarland

INTRODUCTION

#### WHAT THIS TALK IS ABOUT, IN A NUTSHELL

 This talk is about a seemingly illogical fact of language that has gone unnoticed:

- Two logically opposite particles build a complex particle that expresses strong disjunction (XOR).
- A sketch of these particles ...

# **INTRODUCTION**

SUPERPARTICLES: TWO LOGICAL ATOMS

The  $\mu$ -series (mo)

The k-series (ka)

# The $\mu$ -series (mo)

a. Bill mo Mary mo
 B μ M μ
 '(both) Bill and Mary.'

## The k-series (ka)

a. Bill ka Mary kaB κ Μ κ'(either) Bill or Mary.'

# The $\mu$ -series (mo)

- a. Bill **mo** Mary **mo** Β μ Μ μ '(**both**) Bill **and** Mary.'
- b. Mary **mo** M  $\mu$ '**also** Mary'

## The $\kappa$ -series (ka)

- a. Bill **ka** Mary **ka** B κ Μ κ '(**either**) Bill **or** Mary.'
- b. wakaru **ka** understand κ'Do you understand?'

# The $\mu$ -series (mo)

- a. Bill **mo** Mary **mo** Β μ Μ μ '(**both**) Bill **and** Mary.'
- b. Mary **mo** Μ μ '**also** Mary'
- c. dare **mo** who  $\mu$ '**every-/any-**one'

# The *k*-series (*ka*)

- a. Bill **ka** Mary **ka** В к М к '(**either**) Bill **or** <u>Mary.</u>'
- b. wakaru ka understand κ'Do you understand?'
- c. dare **ka** who ĸ '**some**one'

 There seems to exists a disharmonic mapping between the morphologically complex particle clusters and the logically/semantically simple meanings they contribute.

- There seems to exists a disharmonic mapping between the morphologically complex particle clusters and the logically/semantically simple meanings they contribute.
- How can we reconcile this? By assuming compositionality below the word level.

- There seems to exists a disharmonic mapping between the morphologically complex particle clusters and the logically/semantically simple meanings they contribute.
- How can we reconcile this? By assuming compositionality below the word level.
- This is in line with the larger research programme:

- There seems to exists a disharmonic mapping between the morphologically complex particle clusters and the logically/semantically simple meanings they contribute.
- How can we reconcile this? By assuming compositionality below the word level.
- This is in line with the larger research programme:

# The Morphosemantic Principle

"Compositional analysis cannot stop at word-level." (Szabolcsi, 2010, 189, ex. 1)

# INTRODUCTION

DISJUNCTIONS, IMPLICATURES, ALTERNATIVES

- In English, 'or' is always ambiguous between two implicated meanings.
  - a. Either it carries an IGNORANCE implicature,
  - b. or it carries a scalar implicature.

- In English, 'or' is always ambiguous between two implicated meanings.
  - a. Either it carries an IGNORANCE implicature,
  - b. or it carries a scalar implicature.
- (1)  $[Mary saw John or Bill.] = j \lor b$

- In English, 'or' is always ambiguous between two implicated meanings.
  - a. Either it carries an IGNORANCE implicature,
  - b. or it carries a scalar implicature.
- (1)  $[Mary saw John or Bill.] = j \lor b$ 
  - a. (1)  $\rightsquigarrow \diamond [j] \land \diamond [b] \land \diamond [j \lor b] \land \diamond [j \land b]$ "The speaker **doesn't know** whether Mary saw John and the speaker **doesn't know** whether Mary saw Bill and the speaker **doesn't know** whether Mary saw John and Bill."

- In English, 'or' is always ambiguous between two implicated meanings.
  - a. Either it carries an IGNORANCE implicature,
  - b. or it carries a scalar implicature.
- (1)  $[Mary saw John or Bill.] = j \lor b$ 
  - a. (1) ◇[j] ∧ ◇[b] ∧ ◇[j ∨ b] ∧ ◇[j ∧ b]
     "The speaker doesn't know whether Mary saw John and the speaker doesn't know whether Mary saw Bill and the speaker doesn't know whether Mary saw John and Bill."
  - b. (1)  $\rightsquigarrow$   $[j \lor b] \land \neg [j \land b]$ "Mary saw John or Bill, but not both."

j∨b







j∨b

← assertion

 $\mathfrak{A}$ 

j∧b













- :. There two kinds of alternatives: **subdomain** ( $\delta$ ) and **scalar** ( $\sigma$ ) ones.
  - The choice between which ones are relevant is made in syntax using a covert exhaustification operator akin to a silent 'only' – X.



:. There two kinds of alternatives: **subdomain** ( $\delta$ ) and **scalar** ( $\sigma$ ) ones.



- :. There two kinds of alternatives: **subdomain** ( $\delta$ ) and **scalar** ( $\sigma$ ) ones.
  - The choice between which ones are relevant is made in syntax using a covert exhaustification operator akin to a silent 'only' – X.

#### THE SILENT EXHAUSTIFIER

- The operator  $\mathfrak{X}$  is a silent variant of the adverb '**only**'.
- What does it mean?

(2) 
$$\mathfrak{X}(p) = p \land \forall q \in \mathfrak{A}(p) \Big[ [p \not\vdash q] \rightarrow \neg q \Big]$$

 This LF is read as: the assertion, p, is true and any non-entailed alternative to the assertion, q an alternative, is false.

- Consider the enriched F-associated meanings:
- (3) Mary saw John.

- Consider the enriched F-associated meanings:
- (3) Mary saw John. ...... NO ALTS TRIGGERED

- Consider the enriched F-associated meanings:
- - a. Mary saw only John.

- · Consider the enriched F-associated meanings:
- (3) Mary saw John. ...... NO ALTS TRIGGERED
  - a. **Mary saw only John.** ..........δ-ALTS TRIGGERED!
  - b. Mary saw JOHN.

· Consider the enriched F-associated meanings:

| (3) | Mary saw John. |                    | . NO ALTS TRIGGERED |
|-----|----------------|--------------------|---------------------|
|     | a.             | Mary saw only John | δ-alts triggered!   |
|     | b.             | Mary saw JOHN      | δ-alts triggered!   |

· Consider the enriched F-associated meanings:

- We take (3b) to be rather analogous to (3a):

#### THE SILENT EXHAUSTIFIER: A SKETCH OF APPLICATION

Consider the enriched F-associated meanings:

- (3) Mary saw John. NO ALTS TRIGGERED
   a. Mary saw only John. δ-ALTS TRIGGERED!
   b. Mary saw JOHN. δ-ALTS TRIGGERED!
- We take (3b) to be rather analogous to (3a):
- (4)  $\left[ \mathfrak{X}_{[\mathfrak{A}:\delta]} \left[ \mathsf{Mary saw JOHN}_{\delta} \right] \right]$

- Exhaustification need not result in intonational marking. (sкетсн)
- Some words have constantly active alternatives (inversely, Focus may activate otherwise passive alternatives).
- This activity is syntactically visible by a presence of (one of the)  $[\sigma, \delta]$  features.
- A class of these constantly-A-active words includes indefinites, disjunctions, and a special class conjunctions, a.o.
- Crucially, our  $\mu$  and  $\kappa$  markers are such words.
- When alternatives are active, exhaustification is obligatory.

#### BACK TO ENGLISH DISJUNCTION: A SKETCH

- Turning back to the English facts: disjunction is inherently implicative may yield
  - · an ignorance implicature, or
  - a scalar implicature (SI).
- (5) Mary saw John or (Mary saw) Bill.

#### BACK TO ENGLISH DISJUNCTION: A SKETCH

- Turning back to the English facts: disjunction is inherently implicative may yield
  - · an ignorance implicature, or
  - · a scalar implicature (SI).
- (5) Mary saw John or (Mary saw) Bill.
- · We focus on the SI.
- There are two ways of calculating the SI and deriving the exclusive component:
  - locally
  - globally

## (A) GLOBAL CALCULATION

- Global calculation of the exclusive component via  $\mathfrak{X}_{[\mathfrak{O}\mathfrak{A}]}$
- i. Syntactic structure (simplified):



$$\mathfrak{X}_{[\sigma\mathfrak{A}]}(j\vee b)=[j\vee b]\wedge\neg[j\wedge b]$$

## (A) GLOBAL CALCULATION

- GLOBAL CALCULATION of the exclusive component via  $\mathfrak{X}_{[\sigma\mathfrak{A}]}$
- i. Syntactic structure (simplified):



$$\mathfrak{X}_{[\sigma\mathfrak{A}]}\big(j\vee b\big)=\big[j\vee b\big]\wedge\neg\big[j\wedge b\big]$$

## (B) LOCAL CALCULATION

- $\cdot$  Local calculation of the exclusive component via  $\mathfrak{X}_{[\delta\mathfrak{A}]}$
- i. Syntactic structure (simplified):



$$\mathfrak{X}_{\lceil\delta\mathfrak{A}\rceil}(j\vee b)=\mathfrak{X}(j)\vee\mathfrak{X}(b)\vdash\neg[j\wedge b]$$

## (B) LOCAL CALCULATION

- $\cdot$  Local calculation of the exclusive component via  $\mathfrak{X}_{[\delta\mathfrak{A}]}$
- i. Syntactic structure (simplified):



$$\mathfrak{X}_{\lceil\delta\mathfrak{A}\rceil}(j\vee b)=\mathfrak{X}(j)\vee\mathfrak{X}(b)\vdash\neg[j\wedge b]$$



THE MEANINGS OF SUPERPARTICLES

- We now propose two lexical entries for the two superparticles μ and κ, and the Junction head which forms coordination.
- Syntactically, we take the view that conjunction and disjunction are both part of a junction structure (JP) with an abstract Junction head.

- We now propose two lexical entries for the two superparticles  $\mu$  and  $\kappa$ , and the Junction head which forms coordination.
- Syntactically, we take the view that conjunction and disjunction are both part of a junction structure (JP) with an abstract Junction head.



#### THE MEANINGS

• We assume that  $\mu$ ,  $\kappa$ , and J have the following meanings (very generally, see Mitrović 2014 for details):

```
\mu \quad \cdot \llbracket \mu \rrbracket(p) = \mathfrak{X}(\mathfrak{X}(p)) = \neg \mathfrak{X}p
```

k performs inquisitive closure

$$\cdot \ \llbracket \kappa \rrbracket(p) = p \vee \neg p = \{p, \neg p\}$$

J

# EVIDENCE & PUZZLE

#### THE PUZZLING EVIDENCE

- We now turn to the actual problem at hand and present fresh data where both μ and κ markers are used to build XOR words.
- We propose and defend two generalisation.
- (6) a. GENERALISATION 1 Disjunction markers (κ-class) tend to feature in morphologically more complex expression than the conjunction markers (μ-class) do.
  - b. GENERALISATION 2

    Morphologically complex disjunction markers may include the conjunction markers ( $\mu$ -class).

#### SO MANY PARTICLES IN SO MANY LANGUAGES

- Evidence from seven languages (five language families) supports this:
  - · Homeric Greek (†)
  - Hittite (†)
  - Tocharian (†)
  - · Slavonic (Ser-Bo-Croatian)
  - · NE Caucasian (Avar, Dargi)
- I now turn to buttressing these facts.

# **EVIDENCE & PUZZLE**

THE CORE DATA

#### HOMERIC GREEK

- (7) ē-t(e) ehremen para soi κ-μ keep wi<u>th self</u> '...or [else] to keep with yourself' (II. T. 148)
- (8) ei-te boulesthe polemein emin  $\kappa-\mu$  wish to be at war for myself  $\kappa-\mu$  friend einai be 'whether you wish to wage war upon us or [else] to be our friends'

(Cyrop. 3.2.13.)

**ei-te** filoi

#### HITTITE

- (9) nu-šši naššu adanna peškezzi naš-ma-šši now-him κ²-(μ) =either eat give κ²-μ-him akuwanna peškezzi drink give
   'He either gives him to eat or he gives him to drink' (KUB 13.4 i 24)
- (10)  $LU_{LU}=\mathbf{ku}$   $GUD=\mathbf{ku}$   $[UD]U=\mathbf{ku}$   $\bar{e}\bar{s}zi$  human being- $(\kappa+)\mu$  ox- $(\kappa)-\mu$  [she]ep- $(\kappa)-\mu$  be '...whether it be human being, ox or [she]ep.'

(KBo 6.3 iv 53)

#### **TOCHARIAN**

(11) **pe** klośäm nāñiμ ears.du i.gen'also my ears'

(TA 5: 53, b3/A 58b3 in Zimmer 1976, 90)

(12) ckācar **e-pe** śäm **e-pe** sister κ-μ wife κ-μ '(either) sister or wife'

(TA 428: a4, b2; Carling 2009, 74)

## **SLAVONIC (SER-BO-CROATIAN)**

- (13) i Mujo i Haso
   μ Μ μ Η
   'Both Mujo and Haso.'
- (14) **i-li** Mujo **i-li** Haso μ-κ Μ μ-κ Η '**Either** Mujo **or** Haso.'

#### **NE CAUCASIAN: DARGI**

- (15) nu-ni umx u sune-la mer.li-či-b b-arg-i-ra, me-ERG key(ABS) self-GEN place-SUP-N N-find-AOR-1 amma ya pulaw, ya 'är'ä he-d-arg-i-ra but κ pilaf(ABS) κ hen(ABS) NEG-PL-find-AOR-1 'I found the key at its place, but neither the pilaf nor the chicken was there.'
- (16) il.a-la buruš ra yurgan ra 'änala this-gen mattress(ABS) μ blanket(ABS) μ pillow(ABS) ra kas-ili sa⟨r⟩i μ take-ger be.pL '(They) took his mattress, blanket and pillow.'

(van der Berg 2004, 199)

#### **NE CAUCASIAN: DARGI**

(17) **ya ra** pilaw b-ir-ehe, **ya ra** nerg b-ir-ehe κ μ pilaf(ABS) N-do-FUT.1 κ μ soup(ABS) N-do-FUT.1 ('What shall we make for lunch?') 'We'lll make (either) pilaf or soup.' (van der Berg 2004, 204)

#### **NE CAUCASIAN: AVAR**

(18) keto **gi** hve **gi** cat  $\mu$  (J) dog  $\mu$  'cat and dog'

(Avar; Ramazanov, p.c.)

(19) **ya gi** Sasha **ya gi** Vanya κ μ S (J) κ μ V 'either Sasha or Vanya.'

(Avar; Mukhtareva, p.c.)

# EVIDENCE & PUZZLE



| Homeric  | ē                   | te | Ø | (ē                  | te) |
|----------|---------------------|----|---|---------------------|-----|
| Slavonic | $li_{[+arepsilon]}$ | i  | Ø | $li_{[+arepsilon]}$ | i   |

| Homeric  | ē                   | te   | Ø | (ē                    | te) |
|----------|---------------------|------|---|-----------------------|-----|
| Slavonic | $li_{[+arepsilon]}$ | i    | Ø | $li_{[+\varepsilon]}$ | i   |
| Hittite  | naš                 | (ma) | Ø | naš                   | ma  |

| Homeric   | ē                   | te   | Ø | (ē                  | te) |
|-----------|---------------------|------|---|---------------------|-----|
| Slavonic  | $li_{[+arepsilon]}$ | i    | Ø | $li_{[+arepsilon]}$ | i   |
| Hittite   | naš                 | (ma) | Ø | naš                 | ma  |
| Tocharian | e                   | pe   | Ø | e                   | pe  |

| Homeric   | ē                   | te   | Ø | (ē                  | te) |
|-----------|---------------------|------|---|---------------------|-----|
| Slavonic  | $li_{[+arepsilon]}$ | i    | Ø | $li_{[+arepsilon]}$ | i   |
| Hittite   | naš                 | (ma) | Ø | naš                 | ma  |
| Tocharian | e                   | pe   | Ø | e                   | pe  |
| Dargi     | ya                  | ra   | Ø | ya                  | ra  |

| Homeric   | ē                   | te   | Ø | (ē                  | te) |
|-----------|---------------------|------|---|---------------------|-----|
| Slavonic  | $li_{[+arepsilon]}$ | i    | Ø | $li_{[+arepsilon]}$ | i   |
| Hittite   | naš                 | (ma) | Ø | naš                 | ma  |
| Tocharian | e                   | pe   | Ø | e                   | pe  |
| Dargi     | ya                  | ra   | Ø | ya                  | ra  |



CALCULATION \_\_\_\_\_

ANALYSIS: STRUCTURE &

#### THE STRUCTURE & THE THEOREM THAT THE DATA SUGGEST

a. 
$$\left[ \int_{\mathbb{J}^{P^{+}}}^{\mathbb{D}} \beta_{[F:K]}^{\mathbb{D}} \left[ \int_{\mathbb{J}^{P}}^{\mathbb{D}} \kappa_{1}^{\mathbb{D}} \left[ \mu_{P_{1}} \mu_{1}^{\mathbb{D}} \times \mathbb{P} \right] \right] \left[ \int_{\mathbb{K}^{P_{2}}}^{\mathbb{D}} \kappa_{2}^{\mathbb{D}} \left[ \mu_{P_{2}} \mu_{2}^{\mathbb{D}} \times \mathbb{P} \right] \right] \right]$$
b. 
$$\left[ \left( \mathbb{J}^{\mathbb{D}} \right) \left( \mathbb{K}^{\mathbb{D}} \right) \right) \right)$$
c. Theorem. (b)  $\vdash [XP] \vee [YP] \wedge \neg ([XP] \wedge [YP])$ 

## ANALYSIS: STRUCTURE &

**CALCULATION** 

PREJACENT MEANING

#### DETERMINING THE PREJACENT: SIMPLEX $\mu$ -CONTEXTS

 We assume the prejacent is determined at JP<sup>+</sup> level, by virtue of minimality alone. (cf. Chierchia 2013)

## (20) Syntactically rooted меет:



⊢ [XP] ∧ [YP]

# DETERMINING THE PREJACENT: SIMPLEX $\mu$ -CONTEXTS

 We assume the prejacent is determined at JP<sup>+</sup> level, by virtue of minimality alone. (cf. Chierchia 2013)

(20) Syntactically rooted меет:



# DETERMINING THE PREJACENT: SIMPLEX $\mu$ -CONTEXTS

 We assume the prejacent is determined at JP<sup>+</sup> level, by virtue of minimality alone. (cf. Chierchia 2013)

# (20) Syntactically rooted меет:



$$= \prod \left[ \begin{array}{c} JP \\ XP \end{array} \right]$$

$$= \vdash [XP] \land [YP]$$

### DETERMINING THE PREJACENT: SIMPLEX K-CONTEXTS

- We assume the prejacent is determined at JP<sup>+</sup> level, by virtue of minimality alone. (cf. Chierchia 2013)
- (21) Syntactically rooted JOIN:



# DETERMINING THE PREJACENT: SIMPLEX K-CONTEXTS

- We assume the prejacent is determined at JP<sup>+</sup> level, by virtue of minimality alone. (cf. Chierchia 2013)
- (21) Syntactically rooted JOIN:



### DETERMINING THE PREJACENT: SIMPLEX K-CONTEXTS

- We assume the prejacent is determined at JP<sup>+</sup> level, by virtue of minimality alone. (cf. Chierchia 2013)
- (21) Syntactically rooted JOIN:



## DETERMINING THE PREJACENT: COMPLEX $K + \mu$ -CONTEXTS

- Let  $[JP_{\kappa+\mu}^+] = \bigcap \{PREJACENT, ASSERTION/IMPLICATURE\}$
- β-valuation determines primary meaning/prejacent.

# (22) Syntactic competition for valuation:



$$= \sqcup \langle [XP], [YP] \rangle$$
$$= \vdash [XP] \lor [YP]$$

## DETERMINING THE PREJACENT: COMPLEX $K + \mu$ -CONTEXTS

- Let  $\llbracket J P_{\kappa+\mu}^+ \rrbracket = \bigcap \{ PREJACENT, ASSERTION/IMPLICATURE \}$
- $\beta$ -VALUATION determines primary meaning/prejacent.

# (22) Syntactic competition for valuation:



# DETERMINING THE PREJACENT: COMPLEX $K + \mu$ -CONTEXTS

- Let  $[\![JP_{\kappa+\mu}^+]\!] = \bigcap \{PREJACENT, ASSERTION/IMPLICATURE\}$
- $\cdot$   $\beta$ -valuation determines primary meaning/prejacent.

# (22) Syntactic competition for valuation:



$$= \left[ \begin{array}{c} JP \\ XP \end{array} \right]$$

$$= \bigsqcup \langle [XP], [YP] \rangle$$
$$= \vdash [XP] \lor [YP]$$

# AN ALLOSEMIC VIEW OF JUNCTION MEANING

- We derived a technical apparatus which deliver the allosemy J.
- We take the necessary configuration for a singly cyclical domain of spell-out to be constrained to a maximal projection, namely JP to the root of which β attaches.
- (23) For a pair of coordinands (juncts) XP and YP denoting  $\varphi$  and  $\psi$ , respectively, the Boolean value of  $[_{JP}$  XP  $[J^0$  YP ]] to be structurally conditioned:

a. [JP] 
$$\Leftrightarrow \varphi \land \psi /$$
b. [JP]  $\Leftrightarrow \varphi \lor \psi /$ 

$$\beta_{[\#F:k]}$$

#### **NAVIGATION**

Introduction

Superparticles: two logical atoms

Disjunctions, implicatures, alternatives

The meanings of superparticles

Evidence & puzzle

The core data

Summa summarum

Analysis: structure & calculation

Prejacent meaning

Generating alternatives

# ANALYSIS: STRUCTURE &

**CALCULATION** 

**GENERATING ALTERNATIVES** 

#### THE COMPOSITION



- [μP] as FA of [μ<sup>0</sup>] and its argument
   (coordinand)
- ② [κΡ] as FA of [κ<sup>0</sup>] and [μΡ]
- ③ [JP] as

  tuple-forming FA of
  [J<sup>0</sup>] and two [κP]s

  (structural
  coordinands)
- 4 [JP<sup>+</sup>] as FA of [ $\beta^0$ ] and [JP]

## EXCURSUS: THE ♡-PROCEDURE

- · Our alternative set will grow widely.
- We therefore require a system(at)ic procedure that will prevent inconsistent alternative (sub)sets.
- The procedure we appeal to is that of Innocent Exclusion
   (♥)

(24) 
$$\mathfrak{X}(\mathfrak{A}_{\langle\langle s,t\rangle,t\rangle})(p)(w) \Leftrightarrow p(w) \land \forall q[q \in \heartsuit(p,\mathfrak{A}) \to \neg q(w)]$$
  
(Fox, 2007, 26)

# HURFORD'S CONSTRAINT $G \heartsuit$

- (25) HURFORD'S CONSTRAINT (HC)

  Neither of the disjuncts should entail the other, or each other.
  - a. a disjunction of the form  $X_1 \vee X_2$  is odd if  $X_1$  entails  $X_2$ , or vice versa (Katzir and Singh, 2013, 202)

b. 
$$p \vee q = \begin{cases} \bot & \text{if } p \vdash q \text{ or } q \vdash p \\ \neg \bot & \text{otherwise} \end{cases}$$

We take HC-violating alternatives to be ♡-excludable.

- The meaning of  $\mu P$
- (26) a. First layer of exhaustification:

$$\mathfrak{X}(p)(\{p\}) = p \land \neg p$$
$$\vdash \bot$$

b. Second layer of exhaustification:

$$\mathfrak{X}(p)(\{\mathfrak{X}(p)\}) = p \land \neg \mathfrak{X}(p)$$
 $\forall \quad \perp$ 

• For details and further arguments for iterativity of  $\mathfrak{X}$ , see Sauerland 2004, Fox 2007 and Mitrović and Sauerland 2014, *inter. al.*.

• The meaning of  $\kappa P$  as saturated by  $\mu P$ 

# (27) Composing κP:

#### STEP 3

We now pair up the two complex κPs:

(28) Composing JP:

```
[\![]P]\!] = [\![]^0]\!([\![\kappa P_1]\!])([\![\kappa P_2]\!])
(by Lex. it.) = \lambda y \lambda x [x \bullet y] ([\kappa P_1]) ([\kappa P_2])
       (by FA) = [\kappa P_1] \bullet [\kappa P_2]
                          = \langle \llbracket \kappa P_1 \rrbracket, \llbracket \kappa P_2 \rrbracket \rangle
                          = \langle \lceil [p \land \neg \mathfrak{X}(p)] \lor [\neg p \lor \mathfrak{X}(p)] \rceil, \lceil [q \land \neg \mathfrak{X}(q)] \lor [\neg q \lor \mathfrak{X}(q)] \rangle
      (\text{by AO}) = \left\{ \left\{ \left[ p \land \neg \mathfrak{X}(p) \right] \right\}, \left\{ \left\{ \neg p \right\}, \left\{ \mathfrak{X}(p) \right\} \right\} \right\} \right\}
     (\text{by AO}) = \left\langle \left[ \left\{ \left\{ p \land \neg \mathfrak{X}(p) \right\} \right\} \right], \left[ \left\{ \left\{ \neg q \right\}, \left\{ \mathfrak{X}(q) \right\} \right\} \right] \right\rangle
                                                                                                                                                                                                   35/42
```

#### STEP 4

The JP-pair is mapped onto disjunction (as per β-valuation)

```
Composing JP<sup>+</sup>:
          \llbracket \mathsf{JP}^+ \rrbracket = \llbracket \beta^0 \rrbracket (\llbracket \mathsf{JP} \rrbracket)
    _{\text{(by F-check.)}} = \lambda \langle x, y \rangle [x \vee y] (\langle [\kappa P_1], [\kappa P_2] \rangle)
                  (by FA) = \langle \llbracket \kappa P_1 \rrbracket, \llbracket \kappa P_2 \rrbracket \rangle
                                          = [\kappa P_1] \vee [\kappa P_2]
                                         = \left[ \left\{ \left[ p \land \neg \mathfrak{X}(p) \right] \right\}, \right] \lor \left[ \left\{ \left[ q \land \neg \mathfrak{X}(q) \right] \right\}, \right] \\ \left\{ \left\{ \neg p \right\}, \left\{ \mathfrak{X}(p) \right\} \right\} \right] \lor \left[ \left\{ \left\{ \neg q \right\}, \left\{ \mathfrak{X}(q) \right\} \right\} \right]
               (\text{by AO}) = \left\{ \left\{ \left\{ \left[ p \land \neg \mathfrak{X}(p) \right] \right\}, \right\}, \left\{ \left\{ \left[ q \land \neg \mathfrak{X}(q) \right] \right\}, \right\} \right\} \right\}
```

36/42

#### WHAT WE END UP WITH

• Once we 'flatten' the generated alt-set, we end up with the following:

$$\bar{\mathfrak{A}} = \big\{ [p \land \neg \mathfrak{X}(p)], [q \land \neg \mathfrak{X}(q)], [\neg p], [\neg q], [\mathfrak{X}(p)], [\mathfrak{X}(q)] \big\}$$

#### A CLEANER VERSION OF RESULT

- The alternative set  $\bar{\mathfrak{A}}$  is inconsistent.
- We impose the ♡-function which negates an optimal amount of alternative subsets until consistency obtains.

#### A CLEANER VERSION OF RESULT

- The alternative set  $\bar{\mathfrak{A}}$  is inconsistent.
- We impose the ♡-function which negates an optimal amount of alternative subsets until consistency obtains.
- The resulting maximally consistent subsets are:

#### A CLEANER VERSION OF RESULT

- The alternative set  $\bar{\mathfrak{A}}$  is inconsistent.
- We impose the ♡-function which negates an optimal amount of alternative subsets until consistency obtains.
- The resulting maximally consistent subsets are:

(30) 
$$\llbracket \mathsf{JP}^+ \rrbracket = \left\{ \begin{array}{l} [p \land \neg \mathfrak{X}(p)], \quad [\neg p \lor \mathfrak{X}(p)], \\ [q \land \neg \mathfrak{X}(q)], \quad [\neg q \lor \mathfrak{X}(q)] \end{array} \right\} \dots \vdash \neg \mathsf{CONS}$$

$$\mathsf{a.} \quad \left\{ [p \land \neg \mathfrak{X}(p)], [q \land \neg \mathfrak{X}(q)] \right\} \dots \quad \mathsf{excludable: HC}$$

$$\mathsf{b.} \quad \left\{ [\neg p \lor \mathfrak{X}(p)], [\neg q \lor \mathfrak{X}(q)] \right\}$$

$$\mathsf{i.} \quad \left\{ \{\neg p\}, \{\neg q\} \right\} \dots \quad \mathsf{excludable: \exists C}$$

$$\mathsf{ii.} \quad \left\{ \{\mathfrak{X}(p)\}, \{\mathfrak{X}(q)\} \right\} \dots \checkmark$$

#### CONCLUSION

- I tried making sense out of complex morphology for, what seems to be, a rather simple meaning of 'or' or 'v'.
- I have not only shown that five operators (heads) are present in the morphosyntactic expression of exclusive disjunction, but have also presented an analysis of deriving the exclusive component as a computational consequence of five-head/operator composition  $(1 \times J^0, 2 \times \kappa^0, 2 \times \mu^0)$  and alternative elimination via a  $\nabla$ -like procedure (including HC) that handles inconsistencies in the generated alternative set.
- This is a sincere attempt to elucidate the compositional gymnastics of logical units below the word level without compromising either the morphosyntax or the semantics.



#### **REFERENCES**

- Carling, G. (2009). Dictionary and Thesaurus of Tocharian A, volume 1: A--J. Wiesbaden: Harrassowitz.
- Chierchia, G. (2013). Logic in Grammar: Polarity, Free Choice and Intervention. Oxford studies in semantics and pragmatics 2.
  Oxford: Oxford University Press.
- Fox, D. (2007). Free choice and scalar implicatures. In Sauerland, U. and Stateva, P., editors, Presupposition and Implicature in Compositional Semantics, pages 71--120.

  London: Palgrave Macmilan.

#### REFERENCES II

- Katzir, R. and Singh, R. (2013). Hurford disjunctions: embedded exhaustification and structural economy. *Proceedings of Sinn und Bedeutung* 13, 17:210--216.
- Mitrović, M. (2014). Morphosyntactic atoms of propositional logic: a philo-logical programme. PhD thesis, University of Cambridge.
- Mitrović, M. and Sauerland, U. (2014). Decomposing coordination. In Iyer, J. and Kusmer, L., editors, *Proceedings of NELS* 44, volume 2, pages 39--52.
- Sauerland, U. (2004). Scalar implicatures in complex sentences. *Linguistics and Philosophy*, 27:367–391.

#### REFERENCES III

- Szabolcsi, A. (2010). *Quantification*. Cambridge: Cambridge University Press.
- van der Berg, H. (2004). Coordinating constructions in Daghestanian languages. In Haspelmath, M., editor, Coordinating constructions, pages 197--226. Amsterdam: John Benjamins.
- Zimmer, S. (1976). Tocharische Bibliographie 1959-1975 mit Nachträgen für den vorhergehenden Zeitraum. Heidelberg: C. Winter.