QUANTIFICATION II

ENGLISH SEMANTICS · LECTURE 6

Moreno Mitrović

The Saarland Lectures on Formal Semantics

RECAP

RECAP

THE QUANTIFIER BUSINESS

- We found out the type and role that quantifiers play.
- (1) Some city is in Texas.

- We found out the type and role that quantifiers play.
- (1) Some city is in Texas.

- We found out the type and role that quantifiers play.
- (1) Some city is in Texas.

- We found out the type and role that quantifiers play.
- (1) Some city is in Texas.

- We found out the type and role that quantifiers play.
- (1) Some city is in Texas.

- We found out the type and role that quantifiers play.
- (1) Some city is in Texas.

- We found out the type and role that quantifiers play.
- (1) Some city is in Texas.

- We found out the type and role that quantifiers play.
- (1) Some city is in Texas.

- We found out the type and role that quantifiers play.
- (1) Some city is in Texas.

- We found out the type and role that quantifiers play.
- (1) Some city is in Texas.

- We found out the type and role that quantifiers play.
- (1) Some city is in Texas.

- · We found out the type and role that quantifiers play.
- (1) Some city is in Texas.

- · We found out the type and role that quantifiers play.
- (1) Some city is in Texas.

- · We found out the type and role that quantifiers play.
- (1) Some city is in Texas.

A solution to our problem: make \exists -quantifier require two functions (i.e. $f, g \in D_{(e,t)}$):

• A solution to our problem: make \exists -quantifier require two functions (i.e. $f, g \in D_{(e,t)}$):

A solution to our problem: make \exists -quantifier require two functions (i.e. $f, g \in D_{(e,t)}$):

QUANTIFIERS IN OBJECT POSITION

- We've shown that we can handle (2), but what about (3)?
- (2) Some dog bit John.
- (3) John bit some dog.
- To make life a bit easier, consider an object quantifier with a simpler type:
- (4) Putin loves everybody.

• We can't do it.

- · We can't do it.
- · What do we do? Two options.
 - We modify the type-entries for our lexical items.
 (High cost.)
 - We play around with the structure and try to make it work.

REPAIRING TYPE-MISMATCH

- We repair type-mismatch by **movement**.
- This type of movement is known as **Quantifier Raising** (QR), which takes place in semantics, *after* spell-out.

- We repair type-mismatch by **movement**.
- This type of movement is known as **Quantifier Raising** (QR), which takes place in semantics, *after* spell-out.
- (5) A generative model of grammatical modularity:

SOLUTION

• Because the types don't match, the quantifier moves.

- Same would apply to other quantifiers, like someone and noone, as well as more complex quantifiers, such as every/some/no baby:
- (6) Putin hugged every baby.

Same would apply to other quantifiers, like someone and noone, as well as more complex quantifiers, such as every/some/no baby:

- (6) Putin hugged every baby.
- Let's calculate!

BACK TO OUR OBSERVATION

Yesterday, we observed that when a sentence contains a
 ∀ and a ∃ quantifier, the whole thing is ambiguous.

BACK TO OUR OBSERVATION

- Yesterday, we observed that when a sentence contains a
 ∀ and a ∃ quantifier, the whole thing is ambiguous.
- (7) a. Everybody answered some question.
 - b. Some question, everybody answered.

BACK TO OUR OBSERVATION

- Yesterday, we observed that when a sentence contains a
 ∀ and a ∃ quantifier, the whole thing is ambiguous.
- (7) a. Everybody answered some question.
 - b. Some question, everybody answered.
- We would like our calculations to reflect this dual meaning.
- For (7b), we will assume that semantics is reflected in the word order, i.e. **some question** QRs (which is not the case for (7a)

(8) The company sent one representative to every meeting.

· Quantifiers can also bind pronouns:

(9) [Every woman]₁ blamed herself₁

· Quantifiers can also bind pronouns:

- (9) [Every woman]₁ blamed herself₁
- · What do we do here? Let's try calculating.

SOLUTIOM

· We need to QR (quantifier raise) the subject.